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In this work the direct boundary element method is applied
to solve transient wave propagation problems.

At first, the scalar wave equation is considered
and the discussicon initially carried out illustrates the
mathematical operations that are required in order to obtain
two- and three-dimensional boundary integral equations which
are amenable to numerical solutions.

Linear discretization is adopted to represent
the boundary geometry with linear and constant time and
space interpolation functions being employed to
approximate the boundary unknowns. Consequently the
two~dimensional boundary integral equation is transformed
into a system of algebraic equations, which is solved by
implementing a time-stepping scheme in which time
integrations are carried out analytically. OCne-dimensional
Gauss quadrature is used tc perform all boundary integrals
except those in the Cauchy principal value sense which are
calculated analytically. Linear triangular cells are used
to compute contributions due to initial conditions.

An investigation concerning elastodynamics,
where two- and three-~dimensional formulations are
considered is also included. The numerical procedure which
is employed in solving two-dimensicnal elastodynamic
problems is very similar to that concerning the scalar
wave equation, for this reason the discussion concerning
this subject is only cursory. Initial conditions are not
included, but cells are also used in the elastodynamic
analysis, to compute internal stresses.

A number of examples which relate to the two
wave propagation problems previcusly mentioned are analysed
and numerical results together with discussions regarding
their accuracy are included. Certain other topics are
also considered like the number of integration points
that should be used, the relation between the element
length and time interval size that should be chosen, etc.
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CHAPTER 1

INTRODUCTION

1.1 Preliminary Remarks

The discovery by Fresnel (1816} and Young (1817)
concerning the properties of light stimulated scientists to
study the rather complicated phenomena of the propagation cof
waves in elastic bodies. The conceptual problem of
interpreting the physical features of waves in elastic bodies
was as difficult as the mathematical formulation. Apparently
Poisson {1} was the first to recognize that an elastic
disturbance is in general composed of the dilational
(irrotational, longitudinal, primary) and equivoluminal
(shear, transverse, distortional, secondary) waves., Nearly
sixty vears elapsed before Lord Rayleigh {2} discovered the
now well known surface waves (Rayleigh waves). Such waves
are confined to the region close to the surface of the half-
space and propagate with a speed which is less than that of
the eguivoluminal body wave. Surface waves were also studied
by Lamb {3} and Love {4,5} who contributed considerably to
the understanding of the subject. A complete historical
review of the early investigations carried out by Poisson,
Cauchy, Ostrogradsky, Green, Lamé, Stokes, Clebsh and
Christoffel, together with works published later on

surface waves can be found in the book by Love {5}.

Due to its inumerable applications the theory of
wave propagation has been studied by an increasing number
of researchers, but despite the progress achieved in recent

years guite a lot more investigations are required. There



are now many books on wave propagation and a modern appreoach

to the subject can be found in references {6,7,8,9,10}.

The need to find solutions to engineering problems
involving non-homogeneous, non-isotropic solids with complex
geometries and sometimes having non-linear behaviour stimulated
the development of numerical technigues; finite differences
being the first omne to be commonly adopted by engineers. A
review of its applications to wave propagation can be found

in reference {11}.

Presently the finite element method {12-16} is by
far the most popular numerical technique. It is undoubtedly
more efficient than the finite difference technigue in most
engineering applicaticns. Since the sixties the finite
element method has been used to solve elastodynamic problems
{12} and due to the large number of researchers working in
the field, as soon as the year of 1974 general computer
programs Of the type described in references {17-12} became
available. One of the drawbacks of finite elements and
finite differences when used to solve wave propagation problems
is the need to terminate the mesh when the domain being
analysed is not bounded. In this situation artificial
boundar ies reflect unwanted waves that can interfere and
sometimes completely invalidate the results. In order to
avoid this problem researchers developed transmitting
{non-reflecting) boundaries; their application can increase
the cost of the analysis. Besides, the number of finite
elements required can still be large, as such boundaries
are usually capable of transmitting plane or cylindrical waves

only {11}, and therefore they must be placed far from the



initially disturbed region. Consequently a method such as
the boundary element method (20-22} that performs well for
both bounded and unbounded domains and does not necessarily
require domain discretization can be an advantage in many

practical applications.

A great deal of the work carried cut using integral
representations is concerned with the uvse of this useful
mathematical tool to prove uniqueness and existence of
solutions of differential equations {6,8,9,23,24}. ILts
use to obtain solutions of problems was restricted to some
simple applications, sometimes numerical {7,25}:; but no
general algorithm of solution was derived until researchers
started developing boundary element methods. Boundary
integral equation method {26,27} is also a common equivalent
name found in the literature. These methods are called
direct when physical parameters such as displacements and
tractions in elasticity, are directly obtained from the
solution of an integral egquation {20-22, 28-37} and indirect
if this is not the case {27,38,39}. References to most of
the investigations carried out so far on boundary elements
can be found in many textbocks that have now been published

on the subject {20-22, 27, 40-49}.

Different procedures have been adopted to formulate
the boundary element method, all of them dependent on the
previous knowledge of a singular solution (fundamental
solution). 1In considering the elasticity case, Rizzo {28}
and later on Cruse {29,30} employed Betti's reciprocal
theorem {51} and the fundamental solution develcped by

Lord Relvin {52} to obtain Somigliana’'s identity {53}.



Through a limiting process an integral equation relating
boundary displacements and tractions was subsequently
obtained and transformed intc an algebraic system of
equations by using interpolation functions. An alternative
approach which leads to the same equations obtained by Rizzo
is the one used by Brebbia {20} who formulates the prcblem
through weidghted residual considerations. One of the main
advantages of this approach is to make it easier to relate
and combine the boundary element method with other numerical
techniques, Alternative fundamental solutions that
satisfy certain boundary conditions have also been used

{34,36,54} and can be of great advantage in many applications.

The purpose of this work is to solve transient
two-dimensional elastodynamic and scalar wave equation
problems using the boundary element method. The fundamental
solutions adopted here are time-dependent. The integral
equations obtained are solved numerically using a time-

stepping scheme.

Two~ and three-dimensional integral representations
for the two previously stated problems can be found in many
works {6,8,9,55}; but need to undergo further transformations
in order to bhe used as a basis for numerical analysis. This
fact becomes evident in that the integral representation for
the scalar wave equation in three dimensions involves Dirac
delta functions which must be eliminated before a numerical
scheme of solution can be implemented. This transformation
was primarily completed by Kirchhoff {57} who obtained an
expression from which the potential at internal points can

be computed. Later on, integral equations relating only



boundary unknowns were derived and successfully used to

obtain boundary element sclutions {58-60}.

Most of the research carried cut so far on boundary
elements has been concerned with solutions of elliptic and
parabolic type differential equations. Quite a lot of
investigations have already been carried out showing that
the boundary element method is an efficient technigque for
thesge types of problem. However the same amount of effort
has not been directed towards scolving hyperbolic differential
equations. Therefore, this a developing research area with
a great deal to be accomplished in both the analytical

formulation and implementation of general numerical procedures.,

1.2 Literature Survey - Transient Applications

Cruse {61}and Cruse and Rizzo {62 and 63} were the
first researchers in the field of boundary elements to
implement a general numerical procedure to solve two-—
dimensional elastodynamic transient problems. In their
appreoach, boundary elements are used to solve elliptic
differential eguations in the Laplace transform domain and
a numerical algorithm due to Papoulis {64} is used to
obtain time domain solutions. The two numerical applications
carried out by Cruse and Rizzo were concerned with half-plane
problems and showed that their approach gives very accurate

results for early times.

As an extension of Cruse's work, Manoclis (65}
and later Manolis and Beskos {66} compared Papoulis' and Durbin's
{67} algorithms to obtain time domain sclutions. These

researchers studied stress concentration in underground



structures and found that Durbin's algorithm,

although more time consuming than Papoulis', had a high
accuracy even for late times. They carried out a finite
element analysis as well and concluded that due to the low
accuracy of some of the results finite elements were not

ef ficient for this type of problem.

Manolis {65} also formulated the steady state
elastodynamic problem and pointed out that the integral
equations for this case can be obtained from those employed
by Cruse, by replacing the Laplace parameter 's' by 'iw'
where 'uw' is the exciting fregquency. Alarcon et al. {68}
used the same idea subsequently to find the dynamic stiffness

of foundations.

Direct solution of hyperbolic differential equations
using time~stepping techniques was first carried out by

Friedman and Shaw {58} and later on by Shaw et al. {69-76}.

The initial investigations carried out by these
authors appear to have marked the shift to computer solutions
of wave propagation problems using integral equations. Their
boundary equations are basically mocdifications cf Kirchhoff's
integral representation, which is taken tc the boundary of
the domain using standard results of potential theory (77},
and then adapted to the problems they wanted to solve. However,
their applications were mainly concerned with particular
geometries and boundary conditions and no general numerical
formulation was attempted. They solved two-dimensional problems
by considering them as three-dimensional cylindrical ones
with arbitrary axes length. In this way the three-dimensional

formulation can be used, with the artificially introduced



third spatial coordinate playing the role of a time like
variable. With this procedure the time integration which is
required in two-dimensional formulations is avoided at the

expense of introducing an additional spatial dimension.

Further investigations related to Kirchhoff's
integral equation were carried out by Mitzener {59}. He
presented a general numerical procedure to analyse transient
scattering from a hard surface but only considered in his
formulation particular boundary conditions related to the

problem he studied.

Recently Groenenboon {60} using an appreach similar
to Mitzener's presented a general boundary element retarded
potential technique to solve unsteady potential fluid flow
problems in three dimensions. He applied the boundary
element method to study the flow of liquid sodium in cooling
components of liquid metal fast breeder reactors. Radiation
condition was introduced to simulate openings that give an
entrance to other parts of the steam generators and
interconnecting piping system. A concentrated source term
was included in the formulation to simulate the expanding
reaction bubble originating from the sodium~water reaction,
The numerical applications which he carried out produced

encouraging results.

Further contributions to the subject were given by
Neilsonet al. {78} and Herman {79}. The former extended Shaw's
formulation to a wider range of problems and the latter
presented an iteractive method which eliminated spurious
oscillations that can appear at late stages in a time~

stepping analysis.



Three~dimensional fundamental solutions were also
used by Niwa et al. {80} and Manolis {81}. These authors
analysed two-dimensional transient elastodynamic problems
using a scheme identical to Shaw's, i.e., they considered
two-dimensional bodies as cylinders with axes of arbitrary

length.

So far, very few numerical schemes have been
implemented to solve wave propagation problems using two-
dimensional time dependent fundamental scolutions. Das {82}
and Das and Aki {83} studied the propagation of a two~dimensional
shear crack in an infinite homogeneous elastic medium using
a time-stepping approach. However, their formulation was not

a general one,.

Cole et al. {B4} applied the well known two-
dimensional time domain integral equation for the scalar wave
equation {6} tc solve transient elastodynamic antiplane
motions. In that work a time~stepping scheme was used to
obtain numer ical solutions for the problem of two welded half-
planes excited by a concentrated source. Very accurate
displacements at the common surface were ¢btained. Their
formulation was however restricted to problems in which the
boundary integral involving the potential (displacement)
disappears, which implies that internal displacements could
not be computed with their procedure. 1In spite of this their
paper represents the first contribution towards finding a
general formulation using a two-dimensional time-dependent

fundamental solution.



Mansur and Brebbia {85,86} have also applied the
boundary element method to analyse transient problems
governed by the two-dimensional scalar wave eguation.
Commencing with weighted residual considerations they
initially derived the same integral equation obtained by
Morse and Feshbach {6} using Green's theorem. Further
transformations were then carried out to eliminate
derivatives of Heaviside functions that appeared in the
integral equation and a general apprcach amenable to
nunmer ical solutions was derived. Contributions due to
initial conditions and source terms were alsc included. A
time-gstepping scheme similar to that proposed by Cole
et al. was used to obtain time domain solutions. The numerical
features of this approach were illustrated by three examples

for all of which highly accurate results were obtained.

1.3 Contents of the Present Work

In Chapter 2 a short review 0of the basic theory
of elastodynamics is presented, but those not familiar with
this topic may find it necessary to read further on the subject
before continuing with subsequent chapters. If this is the
case suitable explanation can be obtained from consulting
any of the selected references on elastodynamics previcusly
mentioned in this section. The objective of chapter two is
to intreoduce some simple but useful concepts as well as to
describe simultaneocusly some of the notation and terminclogy

used in this thesis.

Initially a review of the small strain theory of
elastostatics is carried out. The main topics presented in

this preliminary discussion are concerned with stress
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equilibrium equations of motion, strain displacement
relationships, definition of rotation and Hookes' law for
homogeneous isotropic elastic bodies. Following this some
basic concepts of elastodynamics are introduced. This is
carried out by describing the boundary initial value problem of
elastodynamics, conditions at wave fronts and equivcluminal
and dilatational body waves., Lamé potentials, regularity

and radiationconditions for infinite bodies are then analysed.
In order to clarify further concepts a discussion on one
dimensiocnal, plane, spherical and cylindrical waves follows.
The last part of chapter 2 concentrates on plane motions,

i.e., antiplane, plane strain and plane stress motions,

Chapter 3 is concerned with time domain integral
representations related to the scalar wave equation. The
discussion carried out within that chapter uses many
properties of the Dirac delta and Heaviside functions. For
this reason after an initial description of the boundary
initial value problem, definition and some properties of these
special functions are presented. Next the Green's function
for three dimensions, together with a weighted residual
statement are used to obtain an integral representation for
the problem. Further operations to eliminate derivatives
of the Dirac delta function are then performed leading to

the Kirchhoff integral representaticon.

The two-dimensional integral representation due to
Volterra is next obtained using the method of descent.
Volterra's formula is then modified following the procedure
described in references {85 and 86}. An integral equation
is obtained suitable for applying in a general numerical

analysis.
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Chapter 4 presents a discussion on the numerical
implementation cf the two-dimensional integral equation
obtained in the previcus chapter. The interpolation functions
used to approximate boundary displacements and their normal
derivatives, together with the procedure used to perform the
boundary integrations are the topics initially discussed.
Next, domain integrations are considered, and the chapter
concludes with an investigation of three illustrative

numer ical examples.

In Chapter 5 the discussion presented in Chapter 3
concerning the scalar wave edquation is extended to
elastodynamics., The chapter opens with a summarized
description of the boundary initial value problem of
elastodynamics. This is followed by two- and three—-dimensional
fundamental solutions being employed together with the
reciprocal theorem of elastodynamics to work out the integral

representations for the problem,

The last part of Chapter five is concerned with
additioconal transformations which must be carried out in
crder to obtain a two-dimensicnal boundary integral equation
for elastodynamics,suitable to be used in a general numerical

time-stepping analysis.

Chapter 6 is concerned with the numerical
implementation of a time-stepping scheme t¢ solve the two-
dimensional boundary integral equation obtained in Chapter 5.
The numerical procedure used to solve elastodynamic problems
with boundary elements is similar to the one described in
Chapter 4. For this reason the initial discussion presented

in Chapter 6 referring to interpolation functions and to the

r
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implementation of the time-stepping technique is only cursory.
Next the numerical scheme used to compute stresses at
internal points is presented, the chapter ending with a

study of five illustrative examples.

Chapter 7 presents a general discussion of the

matters investigated in the previous chapters with

conclusions developed from the present work and recommendations

for future research.
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CHAPTER 2

LINEAR ELASTODYNAMICS

2.1 Introduction

This chapter is concerned with a short description
of the linear elastodynamic problem. The intention here is
to provide an account of the basic theory and concepts
employed in subsequent chapters. A more comprehensive
investigation can be found in any ¢of the many standard

textbooks cited on the subject {5,7-10,87}.

Because of the complex nature of the Navier's
equilibrium egquations, alternative differential operators
have been used to represent motions of isotropic elastic
bodies. A very convenient approach is that which adopts Lam¢&
potentials, in which the displacement components are
expressed in terms of derivatives of potentials that satisfy
wave edquations. The comprehensive information available on
the wave equation, in conjunction with its simplicity can be
of great advantage in gquite a number of applications.
However, particularly in numerical analysis, the adoption
of Navier's equations of motion is preferred. One of the
arguments for this is that it is possible to work directly
with variabkles of physical interest rather than with

elastic potentials.

In section 2.2 the aforementioned approaches and

also other basic topics are considered.

The following section is concerned with one-
dimensional motions and plane, cylindrical and spherical

waves. The objective of this investigation is to introduce
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more of the descriptive terminology used as well as to

clarify some concepts.

The chapter concludes with a section concerned

with plane motions.

2.2 Basic Theory

Throughout this work the Cartesian tensor notation
is used. This notation permits expressions to be written in
a compact form and it is very useful when considering
equations related to mathematical physics. Such notation
makes use ©Of subscript indices (1,2,3) to represent {(x,y,z).
In this work the summation convention will be employed, i.e.,
a repeated index (subscript or superscript) in a term
implies summation with respect to that index over its range.

Hence in three dimensions,

= a,.X,+ta +a,. . X (2.2.1}

23 5%4 i1%17812%07843%3 -
In addition, the Kronecker delta symbol 6ij and

the permutation symbol e, as defined by expression

ijk’
(2.2.2), will be used.

1 when i = j
+J 0 when 1 # j
0 when any two indices are equal,

1 when i,j,k are an even permutation
= |of 1,2,3,

=1 when i,j,k are an odd permutation

of 1,2,3 . (2.2.2)
Ancother useful convention refers to partial
differentiationof functions. The following representation

is used,
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afi.

axl = fij,l (2.2.3)
Within this work unless otherwise stated indices

are assumed to have respectively a range of three or two

for three- or two-dimensional analysis.

Consider an infinitesimal parallelepiped surrounding
a point within a body. If one isolates such a parallelepiped
the remainder 0of the body can be replaced by the components
of the stress tensor Oij (force per unit area) as depicted
in figure 2.2.1. The sign convention for stresses is such
that if Uij is positive the vector representing Gij {stress
vector) points in the positive or negative xj—direction
if the outer normal to the surface element under consideration
peints respectively in the positive or negative X
direction. Therefore, the components of the stress tensor

illustrated in figure 2.2.1 are positive.

I U3z

3147 s

-
[+ oy _—'r Sl Ty o T2

22
I v R

%5*/, f’%i

,//////’ X5
X

Figure 2.2.1 Sense of positive stresses.
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Once the components of the stress tensor are
known, surface forces P; (force per unit area) acting
across any surface in the body, including its boundary, can

be computed from

P, = Oji nj (2.2.4)
where nj stands for the components of the unit vector n
normal to the surface at the point under consideration. Py
must be interpreted according to the sense of the vector

n. It is apparent that the surface over which Py is being
computed can be considered to divide the body into two

others. Py stands for the forces exerted by the body for

which n is inwards over the body for which n is outwards.

Dynamic equilibrium of forces acting on the

parallelepiped shown in figure 2.2.71 requires that

6.. . + b, = pi. 2.2.
ij,1 j = P ( >)

where bj stands for the components of the body forces

(force per unit volume) and p is the density of the body
(mass per unit volume). Time derivatives are indicated
by dots, i.e., azui/at2 = t,. Equations (2.2.5) will be

referred to hereafter as the stress eguations of motion.

Furthermore, if there are no body moments present,

dynamic equilibrium of moments requires that

Uij = oji . (2.2.6)

Let x represent the position vector of a point
within a bedy in its undeformed configuration., Under the

action of loads this point moves into a new position

described by the coordinates xi. The displacement components
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u, are given by

ui(ﬁ't) = xi{ﬁ,t)—xi . (2.2.7)

If the vy displacement components are such that
their first derivatives are so small that the squares and
products of the partial derivatives of u; are negligible,
then strains can be computed using Cauchy's infinitesimal

strain tensor,
(w, . +u. .) . (2.2.8)

Consider a point P' in the neighbourhocod of a
point P within a body. Let the coordinates of P and P' be
represented by Xy and xi+dxi respectively. The relative

displacement of P' with respect to P is given by

du, = u. .dxj . (2.2.9)

In the above expression the time variation of the displacement
field has not been included, therefore it is valid for the
static case. However the discussion now under consideration
also applies to elastodynamics if one considers the
displacement field corresponding to a fixed instant.

Equation (2.2.9) can also be written as {87}

uy = yluy ghuy )dxs + (o g-uy )dxg (2.2.10}
or
du. = te,.dx. - +w..dx (2.2.11)
i 7T 7%y T 304095y e
where
=1 _
Wiy = 2(uj,i ui,j) . (2.2.12)
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The tensor wij is called the infinitesimal rotation tensor.
From expressions (2.2.8) and (2.2.12) it is easy to see
that the tensors eij and mij are respectively symmetric

and antisymmetric, i.e.

€19 T %41

wij = "wji . (2.2.13)

The compcnents of the strain tensor are not
independent from each other. If arbitrary values are assigned
to Eij' from expression (2.2.8) it is possible to obtain a
system Of six equations from which only three unknown

functions, u, are to be computed. Therefore oOne must not

i
expect this system to have a solution, unless some additional
constraints are satisfied. This problem was solved by

St. Venant in 1860 who demonstrated that the strain tensor

must obey the following compatibility equation

€14,%k17 1,45 %1k, 51" %51,ix - 0 - (2.2.14)

Equation (2.2.14) is a necessary and sufficient condition
that strain components give single-valued displacements for

simply connected regions. For multiply connected regions,

however, this condition is necessary but usually not sufficient.

It should be reccgnized that a displacement field
obtained from equation (2.2.8) does not include rigid body
motions. Therefore, the complete displacement field can only
be obtained if together with the components of strain one
also has knowledge of the rigid body motion {i.e. displacement

and rotation} at some point within the body.
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In addition to the stress equations of motion,
Hooke's Law relating strain and stress must alsc be considered
when formulating the elastcdynamic problem. For isotropic
elastic materials in which there is no change in temperature,

Hooke's law can be stated in the form

Uij = Aemmﬁij+2G€ij (2.2.15)
Or inversely
= -V
€55 = 2695 ~ T “xkSiy) (2.2.16)

where A and G are the Lamé's constants and v is the Poisson
ratio., A and G can be computed from v and the elasticity

(Young 's) modulus E as follows

\ Ev
=29y (1779)
G = ET%%GT ) (2.2.17)

Equations (2.2.5), {(2.2.8) and (2.2.15) represent
a set of 15 eguations for the 15 unknowns Gij, Eij and u; .

Gij can be eliminated by substituting equation {2.2.15)
into (2.2.5). Then, using equation (2.2.8) one obtains

Navier's edquations which are outlined below

+ {(A+G)u {2.2.18)

45, kk kokj™Py T oedy
Equations (2.2.18) are also referred to as the displacement
equations of motion and constitute a linear system of hyperbelic

differential equations for the dependent variable u, .

When solving an isotropic elastodynamic problem,
it is necessary to determine components ui(§,t) that

satisfy:
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(a) eguation {2.2.18) for > to at all points inside a
domain 2,

(k) initial conditions

u, (X t5) = ug;(X) '

ﬁiti’to) = voi(g) {(2.2.19)
t=t

o]

3
7t Ui (EeH)

prescribed all over @ including its boundary T,

(c} boundary conditions

ug (X,t) =u,(x,t),x €T

1

1%

(2.2.20)

Py (x/t) = ﬁi(§,t),§ e T

RRET R 2

specified over the boundary T (I'=T +F2). I may be the

1
union of several closed surfaces with a piecewise continuous
exterior unit normal.

From equations (2.2.8) and (2.2.15) stresses can

alsc be written as,

L. = ..o+ G{u, .4u. . . .2,
013 luk’kﬁlj (ulrJ u],l) (2.2.21)

Hence, using equation (2.2.4), the second of the conditions
given by equation (2.2.20) can be described in terms of

displacement components as

)\uk'kni + G{ui,j+uj,i)nj = Pj . (2.2.22)

Consider that a body initially at rest has part
of its domain (or boundary) disturbed. As time elapses this
disturbance propagates setting in motion pcints of the body
that initially were at rest. The moving surface which

separates the disturbed from the undisturbed part of the
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bedy is called the wavefront. Wavefronts are alsc referred
to as surfaces of discontinuity because stresses, strains
and velocities [i;%] can be discontinuous there., It should
however be realized that discontinuities do not in reality
exist in the physical problem, but are mathematical
idealizations of physical quantities that vary rapidly in a
small interval of space and time. Wavefronts do not need
necessarily to be considered as moving into an undisturbed
region of a body. It is quite common to find situations

in which a region is already disturbed before the wavefront

of an additional disturbance arrives.

Consider a surface of discontinuity 1 moving
through &; 7 moves normal to itself with a speed ¢, from the

region 91 toc the region i, as shown in figure 2.2.2. Let

2
li be the components of the unit vector normal to w pointing

out from the region 1 to the region 2., The jump conditions

for displacements in f are given by
Eli] = (u), - (W) =0 . (2.2.23)

Displacements are continuous functions of space and time,
however stresses and velocities can be discontinuous. 1In

the neighbourhood of n the kinematical condition

Ell] = -Cleli'j] (2.2.24)

as well as the dvnamical condition

E:ijlj] = "DCEH] (2.2.25)

must be satisfied.
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Figure 2,2.2 Surface of discontinuity,

A very important topic in elastodynamic theory
{and other branches of mathematical physics) relates to the
existence and uniqueness of solutions, Discussions that
can be found in modern texts (7-10} reveal that further studies
on this subject are still needed. The first proof of
uniqueness, provided by Neumann {88}, is based on strain
energy considerations and applies only for bounded domains.
It also requires displacements and its first and second
crder time and space derivatives (hence stresses and strains)
to be continuous functions of x; and t. There exists however
a great variety of elastodynamic preoblems which do not obey
the restrictions imposed by Neumann's uniqueness theorem.
Seclutions to these problems have been assumed to be unigue

except in scome situations for which uniqueness have recently

been proved {89-~91}.
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Studies concerning existence of elastodynamics
solutions have shown that this is a more complex subject.
In this regard reference {9} recommends the article by
Fishera {92} where a relevant historical bibliography on

the subject is also presented.

The increase in volume per unit volume that occurs

when a body is deformed is called dilatation and is given by

e =u . (2.2.26)

k., k

Consider a displacement field for which e=0. In this
situation, no change in volume occurs and deformaticn
consists of shear and rotation only. Assuming that the body

forces are zero (bi=0) equation (2.2.18) reduces to {10}

Vzuj = iij/cs2 (2.2.27)
where Cq is given by

c = VG/p (2.2.28)

=

and ¥? is the Laplacian operator, i.e.,

2 =
v_uj uj,kk . (2.2.29)
Egquation {2.2.27) is a wave eguation for the displacement

uj, governing equivoluminal waves; Cg is the speed of

propagation of these waves.

Assign now the value of zero to the rotation wij'
Considering again that bi=0’ Navier's equations reduces

to {10}

2 = 11 2
v.uj Uj/cd_ (2.2.30)



24

where Cq is given by

= VY {(y+2G) /p . (2.2.3%1}

Ca

Equation (2.2,.30) is a wave equation for the displacements

uj governing dilatational waves; ¢, is the speed of

d
propagation of these waves.

Each of the displacement body waves governed
by equations (2.2.27) and (2.2.30) can be identified
by numerous distinct physical characteristics. For this
reason, dilatational waves are also known as primary,
irrotational, compressional or longitudinal waves. The
corresponding names for equivoluminal waves are secondary,

shear, rotational, transverse and distortional waves.

The displacement equations of motion can be
replaced by two scalar wave equations by employing Lamé
potentials., This procedure, first introduced by Lamé, can
be described by the following completeness theorem {9}:
Let Uifirt) represent the components of a twice-differentiable
particular solution of Navier's equations in a region of space
f, for t1<t<t2. There then exists a scalar function ¥ (x,t)

and a vector function ¥(x,t}, such that ui(g,t} is represented

by

u (2.2.32)

i =V, i,

and ¢ and ¥, satisfy wave equations

k

‘I aa
Cé(v2¢ - EET Y]+ a::o,cgv?wk - C52

1 -
wk)+ B =0 (2.2.33)
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where o and Bk are such that

by =dlogve B (2.2.34)

It is important to point out that Stokes-Helmholtz
resclution theorem {8-10} ensures that any sufficiently
smooth vector may be decomposed into irrotational and

golenoidal parts as shown by equations (2.2.32) and (2.2.34).

In equation (2.2.32) the three components of the
displacement vector u, are given in terms of four scalar
functions, as a result ¢ and Wi can not be completely
indeperdent from each other. An additional constraint
very commonly found implies that the vector ?i is divergent

free, i.e.,
¥. . =0 . (2.2.35)

Although equation (2.2.35) is very useful, other types of
¢conditions are also found in the literature, information

on this subject can be found in references {7-10} .

In an unbounded body there exists some restrictions
concerning the behaviour of fields at infinity which are
important to recognize. If an unbounded body is subjected to
a disturbance which is confined in a finite regicon within
it, physical considerations require that there exist no
waves propagating back from infinity towards the interior

of the body.

In order to exemplify this fact the wave equation
[equations {(2.2.27), (2.2.30) or (2.2.33}) in three
dimensions will be initially considered. The behaviour of

fields at infinity {9} can be studied by considering a
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large sphere Zr of radius r, centered at a point £, which
contains the boundary T of the region under consideration
{see figure 2.2.3). Let r approach infinity and inpose
the condition that the field at £ will not receive any
contribution from Er' i.e., waves do not propagate back
from infinity. Then from Kirchhoff's integral representation

{equation 3.5.16) one obtains the Summerfield radiation

condition,
au ., 1
lim r[—?} t g ﬁ.] = 0 (2.2.36)
T o J

and the regularity condition

(2.2.37)

lim 'L.1- - O L]
= J

¢ in expression (2.2.36) is the wave propagation speed.
In two dimensions radiation and regularity

conditions read

lim x
r+<n

1
/2 pdu. -
—d +la.l =0, limr Tu. =0 . (2.2.38)
ar c 3] ’ ]
r P 0
I in this case, is a circle of radius r, rather than a

sphere.
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Figure 2.2.3 Simulation of an infinite domain by
an infinite sphere.

Radiation and regularity conditions for
elastodynamics can be worked out following procedures

similar to those just described for the scalar wave equation {9}.

2.3 Some Simple Waves

If the displacement is a function of one space

variable only,

ay = ui(x1,t) (2.3.1)

and body forces are null (bi=0) equation (2.2.18) reduces

to the three uncoupled one-dimensional wave equations {9},

9 %u, 1 8%u_ 1.
0x72 ~ cy? Yoo 37X, CRERA (=2,3) . (2.3.2)

Uqgr U, and Ug represent displacement waves travelling in the
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jnfinite strip shown in figure 2.3.1. Solutions of eguations
(2.3.2} can also be regarded as representing waves in one-
dimensional bodies like strings, rods, etc., The

dilatational component ©of the displacement, u is directed

1!’
along the direction of propagation Xqr whereas the

equivoluminal components ©of the displacements, u, and Usy

are directed along directions perpendicular to X,. As C43”Cq

the dilatational disturbance travels faster than the

eguivoluminal one. If the plane that contains %, and x

1 2

in figure 2.3.1 is the horizontal one u and u, can be

17 72 3
identified respectively with P, SH and SV waves of

u

seismoclogy.

Figure 2.3.71 Infinite strip cof width 1.

Boundary conditions must be specified on two

planes parallel to each other. 1If the planes x.,=0 and x,=1l

1 1
are chosen the boundary conditions can be of type (a), (b)

or (¢} described below.
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(a) displacement boundary conditions

I |
ui{O,t) = ui(t)
- (2.3.3)
ui(l,t) = ui(t)
(b) traction boundary conditions
Pi(O;t) = Pi(t)
— (2.3.4)
Pi(lrt) = Pi(t)
{(c) mixed boundary conditions
u, (0,t) = u,(t)
1 1 (2.3.5)
Pi(l;t) = Pi(t) -
In addition, initial conditions
ui(x1,0) = uoi(x1) ; ﬁi(x1,0) = Voi(x1) (2.3.6)

must also be prescribed.

Analytical solutions for the one-dimensicnal wave
eqguation are not difficult to find. The general solution
of an egquation such as the first of those given by expression

(2.32)was first derived by D'Alembert, and reads
u, = f{x1-cdt) + g(x1+cdt) . (2.3.7)

Equation (2.3.7) has a very simple physical interpretation:

it can be regarded as being composed of two che-dimensional
waves f(x1~cdt) and g(x1+cdt) propagating in the positive

and negative x1—direction respectively. A consideration

for instance of contributions due to f(x1-cdt) only, result

in a conclusion that at t=0 u1=f(x1). At a time instant

t=t1 the shape of the wave given by u1=f(x1—cdt) is that which

is obtained by displacing the initial shape by a distance
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4ty in the positive x, direction as illustrated in figure

2-3.2’

L
k.

} G | !

Pigure 2.3.2 Propagation of one-dimensional waves.

A plane displacement wave propagating in the

direction of an unit vector 1 can be represented by
uitﬁ,t) = ui(xili-ct) (2.3.8)

where xili=d+ct defines planes normal to 1 over which us
is constant. The argument of u, . xili-ct=d is called the
phase of the wave. Figure 2.3.3 shows two planes of constant

phase, L. and L1, that correspond respectively to t=0

0

and t=t1. It should be noticed that ui over LO

uy over LT' therefore, plane waves have the same characteristics

is equal to

of propagation exhibited by D'Alembert solution for the oOne-

dimensional case.
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Figure 2.3.3 Propagaticn of plane waves.

Waves like those represented by eguation (2.3.8)

only obey Navier's equations if

(2.3.9)

(2) 1iui = 0 and c=c .

It can be demonstrated {7,8,9,10} that waves
defined by equation (2.3.8) and which consequently obey
(1) and (2) in expression (2.3.9) are in fact equivoluminal
and dilatational displacement waves respectively. Hence,
a complete analogy with the one-dimensional case previously
studied can be forthcoming if one considers that the
coordinate axis X4 is parallel to the direction of propagation

defined by the unit vector 1.

When a displacement field has radial symmetry

with regard to a point £, a system of spherical coordinates
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(r,6,y), centered at £, is the most convenient to be
employed. Due to the radial symmetry of this problem, the
components of the displacement in the direction 6 and | are

null. Hence the displacement vector reads,
u(x,t) = ur(r,t)gr (2.3.10)

where gr is the unit vector in the direction of the

coordinate r. Navier's equations (bi=0) then reduce to

3%u Ju
T 2 r _ 2 I T
T2 + v —""'""ar Tz L]r = cdz l.]r . (2.3.11)
Introducing a variable ¢ such that u,. = %% equation (2.3.11)
gives
d%(r¢) _ 1 3%(rg)
T = ch el {2.3.12)

which is the well known one-~dimensional wave equation whose

solution (D'Alembert solution) results in
= 1 F(pm
o = rtf(r cdt)+g{r+cdt)] . (2.3.13)

The waves just described are known as spherical waves with

radial symmetry shortened in common use to spherical waves.

When the displacement field has symmetry with
regard £t0o a line one has disturbances which are usually
termed cylindrical waves. This problem can be bhest
studied by using a system of cylindrical coordinates (r,6,2)
where z ccoincides with the line of radial symmetry. In
this case the only variable not equal to null is u. and the

Navier's equations (bi=0) reduce to

2
a,ur 1 aur ur 1
ar?2 r ar re c.,2 r -

(2.3.14)
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As for the case cof spherical waves, when a variable ¢ such
that u, = %g is intreoduced, equation (2.3.14) can be written

as

329 1 34 1 3%4
T +I—_E-C—2d-8t2 . (2.3.1’5)

The general solution of equation (2.3.15) was

first derived by Lamb, and is discussed in reference {93}.

Equations (2.3.11) and (2.3.74) are particular
versions of Navier's eguaticns, and the complete differential
operators in cylindrical and spherical coordinates can be

found in textbooks concerned with the subject.

The body waves discussed in this section are very
often the subject of discussion because as a result of their
simplicity they make clear many concepts involved with the

phenomena of wave propagation,

2:4 Plane Motions

If the displacement is a function of two rectangular

coordinates only, i.e.

ui(§,t) = ui(x1,x2,t) {(2.4.1)
the problem is termed elastodynamic in the plane {9} or
complete plane strain {37}. In view of equation (2.4.1),
Uz 3 = 0 and all other derivatives of the displacement
!

components are functionsof x. and x. only. Therefore the

1 2

Navier's equations take the following form,

Gu.

3, kk + (A+G)u + b. = pu. (2.4.2)

k,kj J J

Gu + b =pl3

B'kk 3 (2.4-3)

3

where j and k can be 1 or 2.
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The domains in which complete plane strain problems

are studied are infinite cylinders whose axes are parallel
to the x3~direction. The mathematical problem of solving
the differential equations (2.4.2) and (2.4.3) can then be
considered as two-dimensional. The domain & and the boundary
I' in this case are defined by the intersection of the infinite
cylinder with the (x1,x2) plane. ©Of course the physical
problem is three-dimensional because displacements and

stresses in the x3-direction do not equal null. Equation

{(2.2.2%1) in this case is written as

Gij = huk,ksij + G{ui,j+uj,i}
033 = Auk,k (2.4.4)
Oj3 = B43,4

Equations (2.4.2), (2,4.3) and (2.4.4}) show that equations
(2.4.2) and (2.4.3) can be solved independently. For this
reason, complete plane strain can also be seen as resulting
from the superposition of the plane strain and antiplane
motions governed respecitvely by eguations (2.4.2) and

{2.4.3). These motions are described in (a) and (b} below.

(a) Antiplane motion:

This motion is governed by the scalar wave
equation (equation (2.4.3)) which is of the same type as
equations (2.2,27) and (2.2.30) previousliy described in
section 2.2. The boundary conditions in this case are

given by,
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= 1 1
(2.4.5)
Py = 0330 = Gugy yny; = Pa(x;,xy,t) on T}
where T;+Fé = T. The initial conditions for the antiplane
motion are written as
Us {XqsX5,0) = uy3(x4,X,)
in Q. (2.4.6)

In this problem the normal stress 933 is null,
therefore only the shear stresses O13 = O34 and Up3 = Uzp
are present in the analysis. In addition the vector

representing the displacement u, is perpendicular to the

3
direction of propagation of the displacement waves. For
these reasons this metion is also called shear antiplane or

horizontally polarized shear motion {8}.

{b} Plane strain motion:

Plane strain motions are governed by eguation
(2.4.2), which is of the same form as Navier's equations for
three dimensions. The only difference is that in the present
situation the indices range from 1 to 2, rather than from
1 to 3. The boundary conditions for this problem are

given by

u., = ui(x1,x2,t) on F1

(2.4.7)

pP; = Uijnj = pi(x1,x2,t) on P2

where T = r1+r2. The initial conditions for plane strain

read


http:(2.4.21
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u, (X, ,%x,.,0) = u_.(x,,xX,)
i oLTTT2 in Q . (2.4.8)
Vi Ry Xy 0) = vy, (Xg0%,)
In a plane strain problem
Uy = €45 T €54 T €53 7 €4, = 0 . (2,4.9)

However, the stress o is not null and can be computed from

33
the second of equations (2.4.4).
When the domain of the problem being analysed

does not extend to infinity in the x_-direction a plane

3
strain condition can not be assumed to exist. In this
case a three-dimensicnal analysis must be carried out,
however when the dimensicns of the body in the x3—directiOn
are small, a condition known as plane stress can be assumed.
This situation occurs when analysing thin plates acted on by

forces parallel to its midplane. The plane stress hypothesis

assumes that

033 =g = 013 = 044 = 023 =0 . (2.4.170)

In this case the same equations of plane strain can be used
provided that the c¢onstants v and E are replaced by

fictitious ones, v and E, given by

Vo= v/ (1+V)
(2.4.11)
E = E(142v)/(1+v?)
which implies that
G =G
— (2.4.12)
A= 2XG/ (A+2G) .
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It is important to state that since €34 is not necessarily
null, uy depends on X4 and the probklem is not really two-
dimensiconal. However, plane stress can be considered a
good assumption when the plate being studied is sufficiently

thin {87}.
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CHAPTER 3

BOUNDARY INTEGRAL EQUATIONS FOR TRANSIENT PROBLEMS GOVERNED

BY THE SCALAR WAVE EQUATION

3.1 Introduction

The scalar wave equation governs many physical
phenomena such as transverse motions of strings and membranes,
longitudinal motions of rods, elastodynamic antiplane motions
etc. Its application however is not only restricted to the
simple problems just mentioned. The discussion on Lamé
potential outlined in section 2.2 illustrated that even
rather complicated differential egquations can sometimes be
reduced to a set of wave equations, In addition, there is
another very important reason for studying the scalar wave
eguation; namely its great simplicity. Through the study
of this equation it is easier toO understand basic concepts
and to derive techniques of analysis that can be extended
to more complicated problems. This can be clearly seen in
this work by a comparison of chapters 3 and 4, which deals
with the scalar wave equation, with chapters 5 and 6,

concerned with elastodynamics.

This chapter is concerned with the reduction of
the scalar wave equation (differential equation) tc an
integral equation., For this purpose Green's functions
{fundamental solutions} for infinite domains together with
a weighted residual statement are employed. Kirchhoff's
integral representation is obtained and then
the two~-dimensional probklem is formulated using the method

of descent. Volterra'’s integral equation {94} is then
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modified following the procedure described by Mansur

and Brebbia {85}.

3.2 The Boundary-Initial Value Problem -~ Transient Scalar

Wave Equation

The boundary-initial value problem for the scalar
wave equation has already been discussed in section 2.4.
However the notation used there referred to elastodynamics.
For this reason a description of the problem will bhe
presented again together with a more convenient notation

and terminology.

The wave eguation can be written in terms of

a potential u as
v2u - {i/cz = —'Y (3:2-1)

where ¢ 1is the speed of wave propagation, Y describes

space and time dependence of source density and u = j2u/at?.
The region (§ in which two-dimensional solutions of equation
(3.2.1) are scught will be considered to¢ be regular in the
sense defined by Kellog {77}, i.e. the T boundary of o can
be composed of several closed regular surfaces which may

have corners or edges provided they are not too sharp {27}.

In order to find the particular solution to
equation (3.2.1) corresponding to the specific problem which
needs to be solved it is necessary to specify the initial

conditions

u{x,0} = u_(x)

o
in @ at t=0, (3.2.2)

|
<
®

v{X,0)
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and. the boundary conditions

u=u on P1
(3.2.3)
_ _du _ =
P=u 40y =34 P on Iy,

where T = F1+F2 and n is the coordinate in the direction

parallel to the unit outward vector n, normal to T.

3.3 Dirac Delta and Heaviside PFunctions

When studying Green's functions it is convenient
to employ the Dirac delta function {56}. In one dimension

the Dirac delta is defined by

’6(x-a) = 0 when X # a and
{3.3.1)

+
{ S{x~a)f(x)dx = f(a) .

-—

The derivatives of the Dirac delta are functions such that,

FS(k)(x-a) =0 when X # a and
too (3.3.2)
[ § ) (xeayfxyax = (-1 5K (a)
k k
where S(k}(x—a) and f(k)(a) stand for jLFS(x—a) and jLEf(x)/
ax X X=a

respectively.

The definition of the Dirac delta function can be
easily extended to domains which are not one-dimensional.
When a two- or three-dimensional domain ¢ is considered the

Dirac delta can be defined as follows,
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(§(g=s) = 0 when s # q , and
(3.3.3)

S(a-s)f{gyda(q) = £({s) .

Y
where s and ¢ represent two points within Q.

Two-dimensiconal Green's functions corresponding
to equations {(2.2.18) and (3.2.1) can be conveniently
represented using the Heaviside function (see figure 3.3.17)
given by,
1 if x>a ,
H(x~a) = (3.3.4)

0 if x<a .

Hix-a)

Figure 3.3.1 The Heaviside function.

The Dirac delta and Heaviside functions can be
related to each other as follows

d = -
i (x=a) = §(x-a} . (3.3.5})

In the discussion just carried out, definitions
and also certain basic properties of the Dirac delta and the

Heaviside functions were presented. Additional properties
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to the ones previously described will be introduced where
required. For a rigorous and detailed discussion oOn this
subject attention should be directed to references {95 and

96}.

3.4 Fundamental Solution in Three Dimensions - Transient

Scalar Wave Equation

The Green's function {(fundamental sclution) for
the scalar wave equation is the solution of equation (3.2.1)
for an unbounded domain {6,%} and a particular concentrated
source, i.e,

v = 478 {g-s) 8 (t-1) . (3.4.1)

Equation (3.2.1), in this case, can then be written as

7%u* - u*/c? = —-4%8(g-s) S (t-1) . (3.4.2)
Thus u* is the effect 0of a source represented by an impulse
at t=1 located at g=s, whilst q and s are referred to in
the literature as observation (field) and source points

respectively.

The fundamental solution represented by equation
(3.4.2) has the following properties {6,9}:

(1) causality

u*(q,t;s,t) = 0 whenever c{t-t)<|g-s] {3.4.3)
(ii) reciprocity
u*(g,t;s,1) = u*{s,~1;49,-t) (3.4.4)
(11i) time translation
u* (q,t+t ;s,1+t1) = u*(qg,t;s, 1) (3.4.5)

1

In three dimensions the solution of equation

(3.4.2) is given by {6,9}
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n* (g, tis,T) = ‘SDr/C)r'(t'“] =%6E:'—c(t—t):| (3.4.6)

where r = r(qg,s) = |g-s|, as shown in figure 3.4.1. 1In
reference {9} substitution of u* given by equation (3.4.6)
into equation (3.2.1) is carried out in order to illustrate
that the first is a solution of the second. A rigorous

derivation of expression {(3.4.6) can be found in reference

(6}.

Figure 3.4.1 Definition of the vector g-s.

3.5 Kirchhoff Integral Representation

When t is replaced by 1, equation (3.2.1) is

written as

2
viulqn) - g5 259U - -y . (3.5.1)

o2

From the reciprocity property equation (3.4.2)

can be written as {6}
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1 3%u*(q,t;s,T1)
c? 3T 2

Viu* (q,t5s,T) -

(3.5.2)

It is now convenient to introduce a notation which

will be employed later, In future source and field points
when over the [ boundary will be denoted respectively by

S and Q.

In order to deduce a singular boundary integral

equation for the problem it is necessary to consider two

distribution of potentials u* and u that satisfy respectively

equations {3.4.2) and (3.5.1). In addition, u* and u are
assumed to be distributed respectively over the regiaons Q+T
and *+I'* (see figures 3.5.1 and 3.5.2) which have the same
physical properties and are such that {* contains +T.

Only fundamental sclutions concefning the infinite space
are used in this work, therefore I'* must be placed at
infinity and u* must obey the radiation and regularity
conditions given respectively by equations (2.2.36) and
(2.2.37). It is important to recognize that a procedure
similar to the one described in this chapter can also be
used when the fundamental solutions employed do not relate

to the infinite space {34,36,541}.

A weighted residual statement for the problem

under consideration can be written as {20~22}

t
2
[ {[v?“ - 5% 355 + y)urdade
08

+ +
0

Ty 1

= ~4nd(g~s)d(t~T1)

t t
= l [ (p-p)u*drdr - [ [ (u-u) p*drdr {3.5.3)
T
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§ X2

X

X3

Figure 3.5.1 Three-dimensional region Q+T.

Figure 3.5.2 Region Q*+0* containing Q+4T.
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du* + . \
=5 t  in equation (3.5.3) represents t+g,

where p* =
€ being arbitrarily small. Applying this procedunre avoids
terminating the integration exactly at the peak of a Dirac
delta function. In equation (3.5.3) space integration and
der ivatives refer to the coordinates of the field points

g or Q. Applving the divergence theorem twice to the term
of equation (3.5.3) that contains the Laplacian operator

{V?u) and integrating by parts twice with respect to 1 the
2

au
ot
expression is obtained (see appendix A) '

term that contains the time derivative r the following

t t
2iq%
[ [ (u*p-up*)drdr + [ j (vZux - ;—2 38;12 Judndr
0 Jr 0 g

+ +

t St
i Ju* Ju
* _ - 94 % =
+ J [ u*ydodr + o2 [ [3'5 u T uj dg o . (3.5.4)
Q R 0

Bearing in mind egquation (3.5.2) and that due to the

causality property

= 0 (3.5.5)

equation (3.5.4) can be written as

+ +

t t
[ [ (u*p~up*)drds - J [ 48 (g-s)d{t~tiudpdr
¢ ‘T 09

+

t
+ J J u*ydQdr - é% [ (vguo—vou;)dﬂ =0 ’ (3.5.6)
0 ‘Q Y
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where
* — |OQu*
v I T
=0
* =
uX |u*| . (3.5.7)
=0

When the Dirac delta properties are applied to the second
term on the left-hand side of equation (3.5.6)} the following
integral equation is obtained,

Lt

t
u{s,t}) = 4}{ u*(0,t;s,)p(Q,1)Al (Q)dr

o Ir

t
- J P*(Q,t:s,T)u{Q,1})dr(Q)d+
g T

vé(q,t;s)uO(Q)dﬂ(Q3
0

ug (g,tis)v,(qrda{q)

+
0
N—‘.

R
+

v

+ J [ u*(qrtFSrT)Y(qJT)dQ(quT . (3.5.8)
0 'q

In the operations carried out to obtain equation
(3.5.8), u was assumed to be twice differentiable with
respect to time and space coordinates. However, this may
not be the case in many wave propagation problems. Therefore

further studies concerning this situation are still reguired.

The properties of the Dirac delta function can be
used to eliminate the time integrations in eguation (3.5.8)

{5,6,9,60}. Taking into consideration u* given by eguation
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{3.4.6) the following operations can be carried out for the

first term on the right-hand side of equation (3.5.8),

£ t
J [ urpdrdr = J % GE(r/c)—(t-T)]p(Q,T)deI'
0 ‘T T Jo

t
= J %[ §(t-t_)p(Q,1)dTdl = [ ;}th,tr)dF (3.5.9)
r r

where tr stands for 'retarded time', equalito [?~r/€].

The fundamental traction can be computed from

P*(Q/trs,T) = Uk (Qutss, )]

_ 3r Ju*

5 3¢ (3.5.10)

The derivatives indicated in equation (3.5.10) refers to
boundary points Q. Using formula (3.4.6), P* can be written

as

p* = %[— ——-;6 [{r/c)-(t—'r)] + 1 24 [(r/c)—(t -r)]]

Y or
(3.5.11)
Equation (3.5.11) can also be written as
*:?.‘.—”__L(S(T_t;+——-6(wt) (3.5.12)
P an T2 r cr BT[ J e

In view of expression (3.5.12) the second term on the
right-hand side of egquation (3.5.8) can be written in
the following way

+ +

t t
3 1
[ [ p*udldr = [ .é_rﬁ[ [- FTslTt) + gf -B-?Es(—f-t )]}udrdr.
r T

0 0 {3.5.13)
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Taking expression (3.3.2) into consideration the following

equation is then obtained

+
t
- | s 1 [Bu(Q,T)
[ jp Mrz ooty - gEagel]
0 -7 L : T

~

=t
T

]dl“ . (3.5.14)

The integral involving source density in equation (3.5.8)

can be operated as follows,

+ +

t t
[ J u*ydadr = J %I Y(q,T)G(T-tr]deQ
0 -0 Q-0

_ 1
= [ —v(q,t,)de .
f

(3.5.15}

Dirac delta properties can also be applied to the terms

that involve initial conditions {9} in equation (3.5.8).

The final integral equation then obtained has the following

form

1 1
u(s,t) = I= [ TI5.0) P(Q:tr)dF(Q)
r

1 ar (s,0) 1 1 au(Q,1)
¥ ZEJ o) ([r2is,0 M%) Yoo |T et ]dF(Q)
r =
Y
AN+ (M) + = | ———y(q,t_)dR(q) (3.5.16)
o ot (o} 47 r(s,q)Y S of b B

2

where Mo and No are respectively the mean value of Ug and

v_ over a spherical surface with centre at s and with a

Q

variable radius ct. It should be noticed that as a result

of the causality property, when trgo the terms on the

right-hand side of expression (3.5.16) give no contribution

to u(s,t).
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Equation (3.5.16) is known as the Kirchhoff's
integral representation and can be considered as the

mathematical representation of Huygens' principle {6,97}.

The singular integrands of the integrals referring
to initial conditions in equation {3.5.8) have been
eliminated. However computation of source density
contributions reguires integrations of a singular function
(%y] to be performed. This is not much of a problem and
can easily be done numerically using the ordinary concept

of integration.

Kirchhoff's integral representation can beused to

%% and %% on the

I' boundary and in terms of source density and initial

compute u at internal points in terms of u,

conditions. However, in a well-posed problem u and p are not
known over the entire T boundary. As a result eguation
(3.5.16) alone does not represent the complete solution

of the boundary-initial value problem described in section
3.2. A boundary integral eguation from which boundary
unknowns can be computed, can be derived by taking equation
{(3.5.16) to the T boundary. The integral eguation obtained,
unlike Kirchhoff's representation, has boundary integrals of
singular functions which must be computed in the Cauchy
principal value sense. The analytical manipulations redquired

will be described next.

When the [ boundary is assumed to satisfy the
Liapunov smoothness condition {27}, the domain Q can be
augmented by a small hemisphere of radius e, whose centre

is at a boundary point S as depicted in figure 3.5.3;
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[‘E displayed in this figure is the boundary of the hemisphere
In this situation, when initial conditions and source density

are not considered, eguation {3.5.16) can be written as

f ;

_ 1
u{s,t) = g= r (8,07 p{Q,t.)dl (Q)
‘T,
L ar(SrQ) 1 ., 1 BU(Q T)
T o) |FrE ot (@) T Ear|T et ar (Q)
‘r-T, =t
;
t g7 (815,78, (3.5.17)
where
- 1
5, = 75,0y P(Q/t)ar (Q) (3.5.18)
.I‘e
- Y (S, Q) 1
S 7 e TrE gy U(Qrt)dr (@) (3.5.19)
J I-E .
= ar {5,0) 1 au(Q, 1)
%y |, En{@  er(s.Q) 3t ] dr_(Q) . (3.5.20)
Fe T=tr

Figure 3.5.3 Domain augmented by a hemisphere of radius

€ whose centre is at a boundary point S.
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When e+0; P-FE+T, and as shown in appendix B

s =0

p

T s =ty (3.5.21)
41 “u 2 f *
s, =0 .

Therefore for boundary peoints located on smocoth parts of
the I' boundary the following boundary integral equation

can be written,

Tu(s,t) = z%{ cTs g7 P(Q.t,)ar(Q)
T

1| 8r(s,0) 1 1 310, 1)
N 4n‘ 51 (Q) {rZ(S;QJu(Q'tr) f s, | an ]dF(Q’
r : =t
r
FOEN 4 (M )+ 50| —a—y(g,t_)aR(q) (3.5.22)
"o at o an r(s,q)Y 9ty q * T
0

It showuld be noticed that the integrals ocutlined
in equation (3.5.22) are to be computed in the Cauchy
principal value sense.

It is important to point out that at points s
located outside Q24T the potential is equal to zero. The

integral equation corresponding to this situation can be

obtained by making the left~hand side ©f equation (3.5.16)
equal to zero, i.e., u(s,t) = 0.

Occasionally a physical phenomenon can be best
represented by a concentrated source given as

y(g,t) = f(t}ﬂ(q-qc) (3.5.23)

where q, gives the position of the socurce. The last

integral on the right-hand side of equation (3.5.22) then
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becomes

1
?; f(tc) (3.5.24)

where r_ = l§ - gci and t, =t - rc/c .

The numerical implementation 0f equation (3.5.22)
is discussed in reference {60}. A special feature of the
three-dimensional analysis is that no time integration is
required. The same does not apply for the two-dimensional

case as will be shown in the next section.

3.6 Two—-Dimensional Boundary Integral Eguation - Transient

Scalar Wave Equation

As previously described in section 2.4 a two-
dimensional problem can be seen as a three~dimensional one
in which u is a function of two rectangular coordinates

only, i.e.
uf{x,t) = u(x1,x2,t) . {(3.6.1)

Expression (3.6.1) implies that tractions, source density

and initial conditions are also independent of x In this

3°
case the domain in which the proeblem is studied can be
considered to be a cylinder whose axis has infinite length

and is parallel to the x3—direction. Then, the two-dimensional
domain & and the T boundary are defined by the intersection

of the cylinder with the (x1,x2) plane as depicted in figure
3.6.1, Therefore, for this particular three-dimensional

situation the first term on the right~hand side of equation

(3.5.8) can be operated as outlined below
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Figure 3.6.1 Two~dimensional domain with a Kellog type

I' boundary.
t+ t+ +o
* = *

‘ [ UBDPdFdT J [ p[ u3Ddx3dF2DdT
0 F3D ¢ P2 =0

t+
= *

J [ pudeFZDdT (3.6.2)

0 F2D
where u%D is the two~dimensional fundamental soluticon given
by

(3.6.3)
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The subscripts symbols 2D and 3D used in equations (3.6.2)
and {(3.6.3) indicate respectively two- and three-dimensions
and will be used hereafter only when confusion is a

possibility.

Transformations similar tc the ones shown in
expression {3.6.2) can be carried out on the other integrals
in equation (3.5.8). When the resulting expression is taken
to the ' boundary the following integral equation is obtained

+

t
c(S)u(s,t) = ?11? J J u*(Q,t:;5,1)p{Q, T)AT(Q)ar
0 ‘T
+

t
- J J P*(Q,t:S,T)u(Q, T)Ar (O)dr
01T

]
- o3| vE(a,tis) uglq) de(q)
4

&

+ 5 uxia,t;8) v (@ de(q)

C
7]
o F
+ { { u* (g,t;S5,1)y(gd,)da(qg)d (3.6.4)
0 1&g
where u* = u§D is given by expression (3.6.3) and
+m
d
*® = * = * = — *®
gu¥
2D
* = E =
Vo T Vozp 3T (3.6.6)
=0
u¥f = uf,n = |uf, (3.6.7)
| =0
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It should be understood that as it is clear that equation
(3.6.4) refers to two-dimensions, the subscript symbol 2D

was not used in that case.

In the three-dimensional analysis,only Liapunov
boundaries were considered, hence ¢{S) in that situation
was equal to 1/2, However, in the two-dimensional
formulation a generalization was introduced, namely that
the I' boundary can be of Kellog type. The parameter c(S)

in this case, as shown in appendix B, is represented by

c(S) = 5= (3.6.8)

where a is the internal angle depicted in figure 3.6.1.

In a similar manner t¢ the three~dimensional case, two-
dimensional integral eguations that apply to points located
inside and outside {+T can be obtained by considering c(S)
in equation (3.6.4) to be respectively equal to one and

Zero,

The methodolegy used here to obtain a two-dimensional
boundary integral equation for the scalar wave equation is
called the method of descent {6 and 9}. Descending from the
three space dimensions is not the only choice in formulating
the two-dimensional problem. If the same procedure described
in section 3.5 had been applied for the two-dimensional
case, the result would be that equation (3.6.4) would have

been obtained again.

The two-dimensional fundamental solution evolved
from carrying out the integration indicated in expression

{3.6.3} {for further details see appendix C) is
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u*(g,t;s,t) = 2¢ H[E(t—r)-%] ] (3.6.9)
Yc¢(t-1)¢-rz -

The integral equation for the two-dimensional
scalar wave equation was first obtained by Volterra {94},
A comparison between Volterra's and Kirchhoff's formulas
displays a significant difference between two- and three-
dimensional waves. Kirchhoff's formula demonstrates that
at a time t, only the signal emitted at a point s at a time
(t - |q—s|/c) affects a point g. Volterra's formula,
however , implies that in two dimensiocns a point g is affected
at an instant t, by signals emitted at a point s, at all
times previous to (t - |g-s[/c). A more comprehensive
discussion of this interesting discrepancy of behaviour of
two- and three—-dimensional waves can be found in references

{6 and 9}.

In addition to being 0f great benefit to the
more complete understanding of wave propagation phenomena,
Volterra's formula can also be used to obtain analytical
solutions. However it has to undergo further transformations

before it can be used in a numerical analysis.

3.7 Additicnal Transformations to Volterra's Integral

Representation

The objective of the operations carried out in
(1) and (ii} that follow is to remove the time and space
derivatives of the Heaviside function that appear in

Volterra's integral equaticn.

(1) The second term on the right-hand side of equation

(3.6.4) can be operated as follows,
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+

t t t
_ u¥* _ d4r - Ju*
‘ [ p*udldt = [ [ U ardr = [ [ T dldr.
T r r

0 0 0 (3.7.1)

Substituting formula (3.6.9) into expression (3.7.1), the

following expression is obtained

t+
ar Ju*
[ [ ‘é—l-'l— u —é-? dtdar
r“o
- t+
- [ % u Zer H C(t-T)*]deI‘
Itig JE:z(t-T)2-ij3
et
ar 2¢C d [ —]
+ -_— u +—|H|[c{(t-1t)-r | [dtdl . (3.7.2)
'ran [0 /oT{E-TyZ-rZ F [ —|

Further operations must now be performed on the second
term on the right—-hand side of equation (3.7.2). The

following relationship will be used

%[HE}(t-T)—r]] = a{gn [H[c(t-‘r)—r]]

0
= ?5[1 - H r—c(t-'r)]] = -GEc—c(t-T):I . (3.7.3)
Therefore, using the notation, .
)
L = L{r,t,t7) = 2 c?(t-nz-rj (3.7.4)
24 2 2 -1/2
LO = Lo(r,t,O} = 2(c_t -r <) (3.7.5)

and bearing in mind expressions (3.3.1) and (3.7.3) the

following transformations can be carried ocut
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t
ar 2¢ 3 [ ]
u =—|H|c{t-T1)-r||dtdl
[PEH [ veé(t=T1)%~r? or [ ]

3 -
ucL E[H c (t-T)-rJ}deI‘

I
—_—
=
(= )
fa g Lo
_—
(e [n

ct
= - ?’i J ul § c*r—(ct-r)]d(c*r)dl”

= -] £= “uL] ar
] Lder=ct-r

-t

I (- o _9 - e -
= g 3 cT) {(ul)d {cT)dTl [ T uOLO H{ct~xr |arl
] r

e
= - { ?:[ {(t-1) u
"0 T

r _
[ 5= u L Hfct :IdI' . (3.7.6)

=%

+ (BU/BT)I] [(t T)‘]dl"d'[

an

Taking expressions (3.7.1}, (3.7.2), (3.7.4), (3.7.5) and
(3.7.6) into consideration the following expression can be

derived

Jt [ 2 [& (t=1) =]
\([Z(t 1) rz'”

+ 2L0u/oT) |y S (t-1) ~F]ards
Yoz {t=-1)2-r2
2u
- %%—OHct-r ar . (3.7.7)
" JeTETET


http:(3.7.11
http:(3.7.21
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(ii}) The following property of the Heaviside function
2 Hic(t-1)}-r| = ¢ JL Hlc(t~1)~r] {(3.7.8)
0T ] or ]

is required in the transformations regarding the third

term of the right-hand side of equation (3.6.4}), given by

*
’ v Yy afg . (3.7.9)
Q

Taking account of expression (3.6.9) it is possible to write

_ du¥]
[ vs uo dq = J [aTJ uodﬁ
Q Q =

i 2 \
+ | u L—?—[H[ct—r:”dﬂ . (3.7.10)

A further investigation concerning the second term on the
right-hand side ©0f expression (3.7.10) 1s now regquired. If
this term is called I2, and a system of polar coordinates
is adopted (see figure 3.7.1) whose origin is at the source

point s, I2 can be written as

8 r=r_(8)
2 I 2¢ 2 5
I, = ra, ———— —--[H ct-r]]drde (3.7.11)
° It I—rz ar
81 r=0 T ]
where 61 = 0, 82 = 27 and
rn(8) =r(s,Q) = [Q-s| (3.7.12)

defines the T boundary in polar coordinates (see figure 3.7.1).



Figure 3.7.1 8System of polar coordinates.
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If expression (3.7.11) is integrated by parts with respect

to r, the feollowing expression is obtained,

5 r.{(9)
2 2c?

12 = ru —— H[ct-—r as
8 © yYgceztz2z-ri 0

8, [r=r(9)
3 2
- } [ Fia (ruoC‘Lo) HE:t—r drde .
01 r =0

Further manipulations give

(3.7.13)
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HE:t—rF(G)]rT(B)dG

1, = u[rrt®)]

‘dcztz-rr{e)

au
- 1 2 - - 9 .2 -
— uc’L_H[ct :]dfz e C L fct-r|an

3
- | uec?r % H[ct-rlde . (3.7.14)

The first integral on the right-hand side of expression
(3.7.14) can be transformed by applying the following

formula (see appendix D)

0

2

J f[rr(e):lrr(ﬁjde = J £ r(s,Q}] % ar (Q) (3.7.15)

0 r
1

and so it is possible to write

{ Err(e)] H ct—rI.(BJ:lrr(BJdG

-T2 (8)
2c?u_(0)
= | (5,09 _ 9 Hct-r(s,Q]]dI‘(Q) . (3.7.16)
R RS )

Taking expressions {3.7.5), (3.7.10), (3.7.14) and (3.7.16)

into consideration, the following relationship can be stated

] vguodg
£

[ 2c? (r-=ct) + 2c?

=
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au, 2c¢?

or veZtZ-r?

+

HE:t-r an

8r 2¢ 2
an © /GTEI=r T

Hct—]dI‘ . (3.7.17)
The last terms on the right-hand side of expressions (3.7.7)
and (3.7.17) will cancel out within eguation (3.6.4) to
produce the final integral statement which for points located

on the ' boundary is written as

£ £t
_ or v
dmc (S)u(s,t) = u*p dlfdr + Y (B*u + u* E)dFdT
G T 0 ‘"
1 [ 1 Buo u,
— * — - % * K —_
tox | ukv A0 + o | (<Bru  + ux..@+ ux —2)aq
-0 &
£t
+ ‘ yu*dfdt (3.7.18)
0 Q

where u* and u; are given respectively by expressions

{3.6.9) and (3.5.7),

2cle(t-T)-1
B* = B*(Q,t;S,1) = I: ] H c(t*‘r)—r] . (3.7.19)
{E:_Z(t-r}?—rir
BX = BX(Q,t;S) = B*(Q,t;S,0) (3.7.20)

and v indicates wvelccity as given by

vV o= 5= . (3.7.21)
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It should be recognized that equation (3.7.18) can
also be used for points inside the domain 2. As stated
previously, c(s) must be regarded as equal to 1 in this

situation.

Two distinct types ©f singularities can occur
in the integrands of equation {3.7.18). The first type of
singularity occurs in the integral of the initial conditions
when r=0 and in the boundary integrals when r and c (t-T1)
are simultaneously null. The second type of singularity
occurs at points located at the front of the wave represented
by the Green's function, that is, in the boundary and source
density integrals when r=c(t-T1), and in the integrals of
the initial conditions when r=ct. Nevertheless numerical
integration of equation (3.7.18) does not present any
notable difficuity as it will be discussed in the next

chapter.
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CHAPTER 4

BOUNDARY ELEMENT METHOD FOR TWO-DIMENSITONAL TRANSIENT PROBLEMS

GOVERNED BY THE SCALAR WAVE EQUATION

4.1 Introduction

Time and space interpolation functions, similar to
the ones used in finite elements, can be employed to transform
the integral equation (3.7.18) into a system of algebraic
equations whose solution supplies the boundary unknowns u
and p. The potential u(s,t) at internal points can then be
calculated by using equation (3.7.18) with c(S) = 1. This
procedure 1is standard in boundary element formulations
{20 and 21}; but a discussion about this subject is necessary
in order to clarify certain factors which only appear in the

problem under consideration.

The usual time marching schemes consider each
time step as a new problem and consequently at the end of
each time interval, values of displacements and velocities
are calculated for a sufficient number of internal points;
this is in order to use them as pseudo-initial ¢onditions
for the next step, i.e. the integral egquation (3.7.18)
is applied from 0 to At, At to 2At etc. In this thesis
however the time integration process is always considered
to start at the time '0' and so values of displacements
and velocities do not need to be calculated at intermediate
steps. With this procedure the domain discretization is
restricted to regions where source density and initial
conditions do not disappear. Domain integrations at a

time step 'j' are then avoided at the cost of having to
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compute time integrations for all time steps previous to 'j'.
This technigue is especially suitable for infinite and
semi-infinite domains. A comparison of the performance of
both techniques for transient heat transfer problems can be

found in reference {351}.

The examples presented in this chapter illustrate
the numerical procedure of solution implemented in this
thesis and als¢o show the degree of accuracy that can be
expected from this scheme. The examples also elucidate other
important factors such as the number of integration points,
and also the relation between boundary elements length and

time step size that are suitable in the numerical analysis.

4.2 Numerical Implementation

In this section the numerical implementation of
equation (3.7.18) is discussed. Occasionally the summation
symbol is used instead of the summation convention defined
by equaticn (2.2.1}). This is done to simplify the
comprehension of certain equations, and in this case summation

symbols invalidate summation convention over repeated indices.

4.2.7 Boundary Integrals - In ovder to implement a numerical

scheme to sclve equation (3.7.18), it is necessary to
consider a set of discrete points (nodes) Qj, j=1,...,J ©On
the I boundary, and alsc a set of values of time tn'
n=1,...,N. u{(Q,t}, v{(Q,t) and p(Q,t) can be approximated

using a set of interpolation functicons as indicated below
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N
L

(l
=1l

u(Q,t) (e N (O) U
=1 m=1 ] 3
J N Im
viomty = ) ] g%-éﬂ n_.](Q)uf]'fl (4.2.1)
i=1 m=1
J X m m
P(Q,t) = § 7 & (t)v.(QPp-
=1 m=1 J J

where m and j refer to time and space respectively. ¢m(t),

n;(0) . 6™ (t) and v (Q) are chosen such that

v.l(Q.) = §,.

) +) (4.2.2)
¢m(tn) = amn

m -

© {tn} - 5mn

where éij is the Kronecker delta defined by expression

(2.2.2). Therefore

uj = u(Qj:tm)
(4.2.3)
m
. = .,t .
Py = P(Qy,ty)

If equation {3.7.18) is written for every node i
and for every value cof time tn' and u, v and p are replaced
by their approximations given by expression (4.2.1), the
following system of algebraic equations is then

obtained
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n 1 N J nm m 9 N J nm_m n n
c(s)u; + 717 Il Huo =g 1] Giipr + Fp o+ S

4T p=r 321 13 4T o g2 1373
(4.2.4)
where
t
ar {(S. ,Q) n
nm _ _ i m .
Hij - [ an(Q) T'i:] (Q)J E’ (T)B*(thn!sirT)
T 0
1 dg (1) )
+ o u*(Q,tn,Si,T):ldeI‘{Q) (4.2.5)
tn
nm _ m .
Giy = { \Jj{Q)[ 6" (Tyu* (Q,t ;S,,T)ATdr(Q) (4.2.6)
T 0
0 = 1‘ u* (g, t ;S.)v_(q)aN(q)
i cZ| “o'd'*n'Yi' Vo
Q
Ju_ (g}
+ M ur(q,t_i8.) =2 an(q) (4.2.7)
C o' n' i Br(Si,q) e
Q
1
+ th ETg;TET BS(Q:tn:Si) UO(Q) dsi (q)
Q
tn
in‘ = [ [ u* (gt 58, 1) y(g,T)d(@dr . (4.2.8)
0’9

It should be recognized that the third term on
the right-hand side of edquation (4.2.7} is the sum of the
first and third terms of the integrand of the fourth
integqral on the right-hand side of equation (3.7.18).

Let ﬁtm be such that ¢m(1) = 0 whenever

nm

T<tm—ﬁtm (see figure 4.2.7.a} and allow cy to be a domain



69

bounded by a circle of radius c{tn—tm+&tm) with centre at

the node i (see figure 4.2.1.b).

g™iT)

E g™ (T)
i
|
I
2N L N
u tm \/ l:., T
L
1 1
[ fn—fm‘l'lﬂfm I.
1 L}
C(th—tm + Aty )
(ol {b)

Figure 4.2.1 Interpolation function ¢m(T), domain Q?m and

boundary segments Fgm and Pj.

A coefficient H?? given by equation (4.2.5) is

m

=0: o is the null SpaCeanm

null whenever T.{T o

]
and Fj is such that ¢j(Q} = {0 whenever Q#Fj. It should be

nm , n
- is Fﬂci
noted that a similar discussion leads to similar conclusions
for the coefficients G?? given by expression {4.2.6).

If Q?m is c?mﬂﬂ, then due to the causality
property, F? and S? given respectively by expressions (4.2.7)

and (4.2.8), can be obtained by carrying out domain
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. » no no , . _
integrations over Qi only, where ﬂi is eguivalent to
nm - -
ﬂi for tm = atm 0.
If the discussion just carried out is taken into
consideration computer time can be saved.

Due to the difficulty to visualize how boundary

unknowns vary with time it is usual to adopt
t -t = At = constant . (4.2.9)

In this case ¢m(t) can be assigned the time translation

property, i.e.

o™ty = o™ t+1at) . (4.2.10)
Hence
g = o) (ml)
i3 17
M = gintlh) (wrl) (4.2.11)
ij ij

If expression (4.2.,11) is taken into consideration, a
large numbker of redundant operations can be avoided in the

numerical analysis.

A time-stepping scheme in which equation (4.2.4)
is successively solved for n=1,...,N can be used to calculate
unknowns u? and q? at the time tN‘ The actual numerical
implementation of such a scheme requires, of course, the

specification of the type of interpolation function to be

used; this will be considered next.

Initially linear time interpolation functions

¢m(T) and Gm{T] (see figure 4.2.2) will be considered, i.e.



1 . . _
EE{T"tm—1) if tm_1<1<tm,
m _ an _ 1 _ .
(1) = 0 (1) = |gplt 7T if b <Tct oy
.0 otherwise .
1 87T 6™ i)
)
!
i
I|
|
L} ! -
L 1I'n et T
1 a1 | Bt L
T 1 T

Figure 4.

2.2

p on the T

The substitution of expressicon (4.2.12) into

boundary.

formulas (4.2.5) and (4.2.6) gives

where

=™

ij’I

nm)
ij’F

(H

nm _ nm
Hij - (Hij)I+(
nm _ nm
Gij - (Gij)I+(
1 ar
- —E[ = nj(Q)J
T
1 or
- E?[ T ﬂj{Q)[
r

nm

Hijlp

nm
Ciylp

t
m *1
ET_tm-1)Bi +

tm*1

tm+1 _ wn

t
m

1 *1N
z ui ]deI'

%1l
ui ]d"{dl"
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(4.2.12)

Linear time interpolation functions for u and

(4.2.13)
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nm tm *T1
(GLJ]I il v vj(Q) (T-tm 1]ui drtdr
r t
m-1
am m+1 0
{Gij)F = EE[ vj(Q) (tm+1—T}ui atdr . (4.2.14)
t
r m

In expression (4.2.14)

I _ .
ui - u*(QrtaniIT)
*I
= * .
Bi B (Q,tn,Si,T} . (4.2.15)

When ¢m(T) and em(r) are linear, H?? and G?? are

null whenever m>n because in this situation

Il
o

H c(tn-T)-f]¢m(T)
(4.2.16)
0

]

H[C(t -1)- ] o™ (1)

as illustrated in figure 4.2.3.

H[et-T1-r] m

S g (T

(th -g) tn tm-1 m T4 t
ry '
— Ly
Figure 4.2.3 1Illustration of a situation in which
ghit _ ghm _ o

ij ij
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The time integration indicated in equation (4.2.14)

can be carried out analytically giving

nm, _ 2 or nm
(Hiyh1 = Zat J 5n N5 (@ Dy dl
r
nm 2 Jr nm
(Hij)F = E:""t'[ 5 nj(Q) (D ) Al
r
nm _ 2 nm
(Gij)I T cAt Uj(Q) (Ei )I ar
‘T
nm _ 2 nm
(Gij)F = SAT vj(Q) (Ei )F ar (4.2.17)
‘T
nm nm nm nm , ,
where (Di )I' (Di )F' (Ei )I and (Ei )F are given 1in

appendix E.

When Bm[T) is constant (see figure 4.2.4), Bm(T}

can be represented in the following way

1 if t <1<t
m—-1 m
(1) = (4.2.18)
0 otherwise .
1™ T
1 1
|
] ! i
1 1
] 1
] 1
— ' -
e t T

Figure 4.2.4 Constant time interpolation for p.
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The substitution of formula (4.2.18) into

expression (4.2.6) gives

t
m
Ghm J uj(Q){ u;n dtdT . (4.2.19)
T

Analytical time integration can now be carried
cut giving

nm _ 2 nm
Gij = ST l vj(Q) F,odr {4.2.20)
r

where Fgm can be computed as shown in appendix E.

In order to perform numerically the integrations
indicated in expressions (4.2.17) and (4.2.20) the T boundary
must be replaced by an approximated one. Linear discretization
is used in this work, that is, I is represented by a series
of straight line segments, ey {elements}, each one joining
two consecutives nodes of T, lk and o, are the length of ey
and the unit outward vector normal to €. respectively (see

figure 4.2.5).

When two elements ep and eq with a common node 3
are considered, and the interpolaticn functions nj(Q} and
Uj(Q} are linear, the use of natural coordinates gives

(see figure 4.,2.6)

'% (£5*1) Q ee,

nj(i) = vj(i) = 1 (4.2.21)
7 ggmh Q ee,
|0 otherwise .
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Figure 4.2.5 Linear discretization of the T boundary.

,_
i
~
Mo
—
e
)
M
—

Figure 4.2.6 Linear space interpolation functions for u

and p on the I' boundary.
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nm

(Hys) 1

nm

(H1 D p

nm

{Gij)I

.

in terms of the homogeneous coordinates &, a change of

1

When formula (4.2.217)

is given as follows

2 ar nm
cht 3n nj(Di }Idrp
e
_ P
2 ar nm
sEE|| Fm D3Py )T
‘e
.. P
2 nm
grE|| V3(Fa
‘e
| P
2 nm
chel| V3L 09T,
e
| P

+

nm
nj (D)

I

darl
q
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is considered, expression

(4.2.22)

Since the interpolation functions are expressed

coordinates has to be carried out before performing the

integrations indicated in expression (4.2.22); this problem

is considered in appendix F.

When em(r) is constant and formula (4.2.21) is

taken into consideration, expression (4.2.20) can be written

as

nm
(Gij)I

nm
(Gij)F

¢ =
ij

2
chAt

When n = m, the coefficient (H?@)
ii

I

(4.2.23)

in expressicn

{4.2.22) contains integrals which must be evaluated in the
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Cauchy principal value sense. The function being integrated
has a singularity of the type 1/r, as shown in expression
(E.4}. However when linear discretization is used these
integrals disappear due to the orthogonality of Fk and oy
(see figure 4.2.5) which makes g% = 0. This problem
deserves special attention when interpolation functions of
order higher than linear are used to approximate the

geometry ©f the I' boundary.

When n = m the coefficient {G??)I in expressions
{4.2.22) and (4.2.23) contains integrals which have a
singularity of the type Inr., These integrals can be
computed in the ordinary sense using Gaussian quadrature.
However , a greater precisicon can be obtained if these
integrals are carried out analytically rather than numerically

as shown in appendix F.

The rest of the coefficients in expressions
(4,2.22) and (4.2.23}) can be calculated using standard Gauss

quadr ature formulae.

Another situation t0O be examined is that in which

nj(Q) and vj(Q) are constant, i.e.

1 when Q € e:.|
nj{Q) = Uj(Q) = {4.2.24)

0 otherwise .

In this case a node j can be considered as belonging to a
set of discrete points Qj on the T boundary, j=1,...,J
where each Qj is placed at the middle of an element ej

as shown in figure 4.2.7.
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Figure 4.2,7 Position of nodes when constant interpolation

functions nj and vj are used.

When ¢m(1) and Gm(t} are linear the following

expression can be written

nm, _ _2 or ..nm
(Hys)r = Zac an (P10 4Ty
‘e.
J
nm - _2 9r . \nm
(Hij)F T cAt 51 (Pi )Fdrj
-ej
nm _ 2 nm
(Gii)1 = zaE | (Ey ) gdly
e.
J
nm _ 2 nm
(Gij)F At (E] )Fdrj . (4.2.25)
e,
J

It should be recognized that in this case c(Si) is always

1/2. When Sm(T} is constant, (G??J and {G??) can be

I ¥

calculated from



79

nm 2 nm
(G:Lj)I T chAt Fy drj
e .
]
nm
G.. = 0 » 4.2-26
{ lj)F { )

Because of the causality property a situation exists,
in which it is necessary to carry out numerical integrations
of functions which are null over part of an element. In
this case it became oObvious that greater precision could be
obtained if such integrations were performed from j to k'

instead of from j to k as depicted in figure 4.2.8.

k!

———— Integratien sense

Figure 4.2.8 Integration over part of an element.

The fundamental solution of the problem under
consideration [see equation {3.6.9)] suggests that the
number of Gauss points can be gradually reduced as (t-T1)
gets bigger. This procedure was used in the numerical
analysis carried out in this research, in order to save

computer time.

4.2,2 Domain Integrals - The domain contributions due to

initial conditions can be calculated from expression (4.2.7)

which can be written as
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Ju
n _ 1 *I1 1 *N 0
Fi =37 | Yoi Yo 98(D + ¢ | Uy 7F dla) +
Y
T _*n
+ tn T BOi u, df(q) (4.2.27)
Y’
*n == - *n — -
where Uy ~ uo(q’tn'si) and BOi Bo(q,tn,si).

In order to carry out the integrations indicated
in expression (4.2.27) the domain § is divided into L
triangular subdomains, Ol (cells), as shown in figqure 4.2.9.

Then the expression (4.2.27) can be written as

r

Pl o= % s * oy da(q) + & «n 2o da(q)
i~ 129 c2 Y5i Vo q c Yoi Tr !
9 Oy
1 % 11
+ tn = BOi U, df{qg) {(4.2,28)
lol

Figure 4.2.9 Discretization of the domain Q@ into triangular

cells,.
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The position of a point g inside a cell can be

more conveniently defined by triangular coerdinates {13},

i.e.
M
He A
_ M
Ha A
(4.2.29)
_
M3 A
Hytuytugy =1
where A1, A2 and A3 are respectively the areas of the
triangles O%, O% and 0% depicted in figure 4.2.10, and
A = A1+A2+A3 is the area of the cell Ol' It would have
bean more consistent, regarding notation, to have used
1 1

LT, A”, and Ai, when these parameters refer to the cell Ol'

However in order to¢ avoid having an excessive number of

indices, 1 will be used only when confusion is likely.

Figure 4.2.10 Areas for the definition of triangqular

coordinates.
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When U, and v, are linearly interpolated inside

each cell the fecllowing expression can be written

u = u_.u.
0 Olul

{(i=1,2,3) (4.2.30)

Vo T VoiMy

where Usy and v, are respectively initial displacement

au
and initial velocity at a node i of the cell Ol' Tﬁ? is
also required and can be calculated from expression
(4.2.30), giving
3u aui
7 - Yoi ot (4.2.31)
Triangular coordinates can be related to
rectangular coordinates in the following way
Ao
b= =2 + (b x. +a x.,) (4.2.32)
o A 28 7a71 Tam2 e
where
- .Y _ B
a, = X, x4
I - B ¢
by = %5 = X5
(4.2.33)

0 = B Yo Y B
2Aa X X5 x1x2

— 1 —
a = 5(b1a2 bza,]) .
In expression (4.2.33) o =1,2,3 for B = 2,3,1 and vy = 3,1,2.

Considering a system of polar coordinates (r,H)
with origin at the source point Si as depicted in figure

4.2.11, expression {4.2.32) becomes {36}

My = Cu + Da{e)r (4.2.34)
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where
_ Q
c, = B)/R
_ 1 ,
Da = iﬁ(bacose+aa51ne) . (4.2.35)
X5 |
.2
3 4
|
r
8
S ’(T

Figure 4.2.11 Polar coordinates based af the source point Si'

Taking formulas (4.2.30), (4.2.31) and (4.2.34) into

consideration, uyr Vg and BuO/Br can be expressed as

Y5 T Yoa |:Coz+Da{e)r]
(x=1,2,3)
v, = Van?a+Da(B)€] 4.2.36)
gu
o _
3% = YouPal®) :

Integration over a cell can now be performed
using polar coordinates. In this work such integrals are
obtained as a sum of three integrals over the domains E1,
E2 and.E3 depicted in figure 4.2.12. Therefore, when

formula (4.2.36) is substituted into expression (4.2.28)
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the latter becomes

an

1i You {(a=1,2,3) {4.2.37)

L
= Y R v 4T
121 li “oa

where Voo and Uy represent respectively the values of Vo

and u at a node a of the cell 01, and
0

i
RO = b % v gt{e)u"n C +D_(8)Y] rdrdd
1i Tzl o1 |CotDy (6)7] rar
£=1)g |, 1

u (4.2.38}
i

T = % M L u* p (eyr + £ B*R[T +p (8 drds

1i £21 c Yoi a( Yx noi[a a( )r] r *

0 | 1

In expression (4.2,38), t = 1,2,3 for u = 2,3,1 and

v =1,3,2,

i i
rt(e) when rt(6)<ctn
gt(ﬁ) = (4.2.39)

i
ct when rt(6)>ctn ;

and ri(@}, 8 eu and Gv are shown in figure 4,2.13.

tf

Expression (4.2.38) can now be integrated

analytically with respect to r, giving

Il t~—3L

eV
1 2c (et =V, V,)

eu

de

- i 242
+ Da(e) gt(B)V1V2+c.th3
1
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Figure 4.2.12 Domains used to integrate over a cell.

-2ag

r:[9}= -
bycos & + gy 51n@

8,

ev_¥J [iﬁ

Figure 4.2.13 Definitions with cell integration purpose.



86

9
3 v v
T%E =29 c |1 - vl
t=1], 2)
u
v, + 1
+ D (8) ctnLV3 + -E - v1v%} ae (4.2.40)
/ 1
where
_ _ i
v, = yot, - gi(o)
_ i
V2 —A{ctn + gt(e} (4.2.41)
g, (8)
V3 = ar¢sin ctn

Integration with respect to 8 can be carried out
using one dimensional Gaussian quadrature. This can be done

by simply interchanging the variable & as follows
6 = £(6.-6 ) + (8 +6 ) (4.2.42)
2'v Tu 2 v Yu '

where £ is defined on the interval E‘I ,1:|.

If the spatial distribution of source density can

be represented by a Dirac delta function, i.e.

yid,1) = £{1) 6(q-qc) . (4.2.43)

the integration over @ shown in expression {4.2.8) can be

carr ied out analytically giving

t
n

g8y = f(t) u*(qc'tn;si’T)dT . {4.2.44)
0

When £{1) is linearly interpolated over the time

the following expression can be written



oM (7)™ (4.2.45)
1

f{1) =
m

Il =12

where Bm(T) is given by expression (4.2.12) and £ = f{tm).

Then, expression (4.2.44) can be written as

N
n A nm m
st = ¥ w, f (4.2.46)
* m=1
where
t t
m m+1
nm _ 1 - kN _ *n
Wi T & (1=t ) (uy")edr + (€4~ T) () D AT| (4.2.47)
Cm-1 t
and
(u;“)C = u(q,,t i8S, T) . (4.2.48)

Analytical integraticon of expression (4.2.47) gives

nm _ 2 nm, c nm, C

nm, < nm, <
i) ad (E{)g

given in appendix E to calculate (E?m)

where (E can be computed from the expressions

nm
1 and (Ei )F by

making r=r_ ; rg ig given by

r. = lg-q | . (4.2.50)

When the source density is distributed over O,
volume and time integrations can easily be carried out
using time and domain interpolation functions respectively
which appear in expressions {(4.2.12) and (4.2.30). This

case will not be discussed here.
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4,.2.3 Double Nodes - A very common situation in wave

propagation problems concerns p being discontinuous on the
boundary. A convenient way of analysing these sorts of
problem is that in which two distinct values of

tractions, pr and pl, and two values of displacements

¥ and ul are considered on the neighbourhood of each point
where a discontinuity can occur (see figure 4.2.14). So,
for each of these points two extra boundary unknowns are
introduced in the analysis, When, pr and pl, or ur(ul)

and pl(pr) are prescribed the continuity condition for

displacements, namely
u =1 (4.2.51)

gives the extra equaticn required. When constant elements
are used, this problem is naturally considered by the
discontinuous nature of these elements, However, when
linear or higher order elements are used special
considerations are required. The system of equations given
by expression (4.2.4) can still be used and the condition
(4.2.51) can be introduced using “double nodes", i.e. two
different nodes being placed at points where p can be
discontinuous. 2An extensive study on this subject can be

found in the references {99-101}.
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lg[[””””llllll””ﬂﬂ
\ \Dar I/ A \D:

p! A
a8

Figure 4.2.14 Discontinuous p on the [ boundary.

A more invelved situation is that in which pl and
pr are different from each other in the neighbourhood of
a point where the potential is prescribed. The approach to
be followed in this case can be found in references {37 and

100}.

In quite a number of situations it 1is not possible
to determine a priori when and where tractions are
discontinuous. In this case the mean value of the unknowns

is t0o be expected from the numerical analysis.

Ancother methdd of dealing with discontinuities is
by using discontinuous elements {102 and 103}. The
discontinuity is then avoided because as shown in figure
4.2,15 the nodes of the discontinucus elements are placed
inside them, rather than on their extremities. It should
be recognized that this procedure can also be used when

time discontinuities occur in a problem.
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Figure 4.2.15 Discontinuous linear elements.

4.3 Examples - Scalar Wave Equation

If it is desired to find bcoundary unknowns at a
time tn’ it is convenient to write equation (4.2.4) in the

following way (summation convention does not apply)

J J n-1 J
n 1 nn n 1 nn _n nm m
cisyu + = § # ul ==} &Tpl~ )} ) HL u.
i 4n 321 ij 73 4T 321 ij ¥3 m=1 §=1 ij "3
{(4.3.1)
ne d nm m n n}
+ G, + F, + 5. .
mz1 j£1 ij P i i
Equation (4.3.1) can also be written as
Hu=Gp+3B (4.3.2)

where H and G are square matrices of order (JIxJ)

and u, P and B are vectors.

If the boundary conditions at the time tn are
considered and the system of egquations that arises is reordered

expression {4.3.2) can be written as

Ay=2¢C (4.3.3)
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where the vector y is formed by unknowns u? and p? at

boundary nodes.

Within the examples analysed in this chapter the
boundary conditions at boundary nodes are always of the
same type, i.e. a node at which u (or p) is initially
prescribed will only have prescribed u (or p)} until the end
of the transient analysis. Conseguently, due to the time
translation property (see expression (4.2.11)), A requires
to be inverted only once. Gauss elimination is used in this

work to obtain the inverse of A,

In the examplesdiscussed here the numerical
integrations mentioned previously in section 4.2 were carried

out using a maximum of ten Gauss points.

The choice of cell discretization to be used
when solving a problem is fairly simple because Uge Vg
and v are known functions. However boundary discretization
and time division depend on what the problem under consideration
is like. For this reason, in many problems, more than one
numerical analysis has to be carried cut in which the
boundary discretization and the time division are successively
refined. The quantity of work required is considerably
reduced as experience ig gained in the method adopted. The
observation of certain physical characteristics of the
problem can also be of great help. For instance when
studying wave propagation care should be taken on the choice
of time intervals and boundary discretization in order to

avoid contradicting the causality property too far, that is,

in a time interval, waves should not be allowed to travel
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between nodes far from each other. There are also certain
precautions which must be taken when choosing the parameter

B given by

g = SR (4.3.4)
i
It is quite commonly regarded that there exist strict rules

concerning the choice of a similar parameter in finite
differences and finite elements; which if not followed can
result in a completely invalid analysis. 1In boundary elements
conclusive analytical studies regarding the choice of R have
not yet been completed, consequently the discussion based

on numerical experiments presented in the examples can be

very helpful.

The numerical procedure discussed previously in
this chapter was converted into FORTRAN and implemented on
an ICL2970 computer. The computer code was used to analyse

a number of examples which will be presented next,

4,.3.1 One-Dimensional Rod Under a Heaviside Type Forcing

Function - The results obtained from using the two-dimensional
boundary element computer code were compared with the
analytical results for a one~dimensional rod under a

Heaviside type forcing function. The boundary element solution
considered a rectangular domain with sides of length a and

b (b = a/2) as depicted in figure 4.3.1. The u displacements
were assumed to be zero at x.,=a and their normal derivative

1

P were also taken as null at X,=0 and x,=b for any time 't'.

2

At§%=® and t=0 a load Ep was suddenly applied and kept

constant until the end of the analysis (E is the Young's

modulus). Due to the topeology and boundary conditions the
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problem is actually one~-dimensional and its analytical

solution can be found elsewhere {1041}.

Three different combinations of interpolation

functions were used in the analysis as given in table 4.3.1.

The boundary was discretized into twenty four
constant and linear elements as shown in figure 4.3.2,

double nodes were used at the corners for the latter model.

Combination 1 was tried with 8 = .6 and gave
good results for the displacements u (the degree of accuracy
was the same as combination 2). The numerical values of
p., however, oscillated around the analytical solution,
displaying the onset of instability. This unstable
behaviour of p can be avecided in this particular analysis
by replacing the jump of the forcing function PH(t-0) by
a steep slope. Because of the oscillations that can occur
on the numeriéal values of p, it was decided not to use

combination 1 until further studies have lbeen accomplished.

Combinations 2 and 3 were then compared and it
was found that for the same number of boundary elements and
the same time division, better results were obtained for
linear nj(Q) and vj(Q) {combination 2) than for constant
nj(Q} and vj(Q) (combination 3). A&s the computing time
is much the same for both cases it was concluded that
combination two is more efficient than combination three,
Therefore, unless otherwise stated, all the boundary
element method (B.E.M.) results presented from now on are

based on combination 2,
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Combingtion Interpoiation function
7;[@and v {0} &M it} 87t
1 Linear Linear Linear
2 Linear Linear Constant
3 Ganstant Linear Constant

Table 4.3.1 Combination of interpolation functions.

Linear T‘j {Q) and v, (Q}

Constant 1j; ) anc v; ()

Figure 4.3.2 Boundary discretization for one-dimensional rod.
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Figures 4.3.3 -~ 4.3.5 show B,E.M, and analytical
displacement results at internal and boundary points. The
degree of accuracy of B.E.M. results is guite good. 1In
figure 4.3.6 the normal derivative of the u displacement
at point (a,b/2) versus ct is presented. Except for the
presence of a comparatively small amount of noise, boundary

elements and analytical scolutions are in good agreement.

Considerable care must be taken with the choice
of B in order to avoid noise, which althocugh usually not
critical for displacements, can often be excessive for
tractions. 1In order tc study the effect of varying the
parameter B on the level of noise four other values of B were
investigated; 0.4, 0.5, 0.8 and 1.0 in addition to B = 0.6.
The results for p at point (a,b/2} are plotted in figures
4,3.7 - 4.3.10. It is apparent that excessive noise
occurred for B<0.6. The value B = 0.6 was considered the

optimum for this problem,

4.3.2 One-Dimensional Rod Under Prescribed Initial Velocity

and Displacement - FPor this problem the geometry and boundary

conditions were identical to the previous case and, in
addition, over the domain Qo depicted in figure 4.3.11,

the following initial conditions were prescribed
_P.a _
Uy (xq40%5) = 5l = %4
{(4.3.5)

Vo X eXy) = 5 .

The analytical solution for this problem is the
same as for the previocus one but with the time t dephased

by a/dc, i.e.



, = Analytical
T ........ BEM for B=0.6

8a

Figure4.33Displacements at internal points E{a/8,b/2), Fla/2, b/2}
and G{3a/4, b/2} for one-dimensional rod under a Heaviside type
forcing function, 1{Q), vj(0), ¢ (t) are linear and 8™ {t) is constant.

X, Analytical
-------- BEM for B-0.6
ﬂ a—
b[ = =
- —
i | X
' a ' 1
Il 5 PH(t-0)
wid 5 ol
1.8
1.0
c9
03
|
a2 a 3a a x
4 2 4

Figure4.3.4Displacements along boundary y = 0 at times ¢t = 0.3a/,
t = 0.9a/, t = 1.8a/c for one-dimensional rod under a Heaviside
type forcing function. nj{a), v;(0), @#M{t) are linear, and 87 {¢t) is
constant.
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X, I Analytical
-------- BEM for =06

Figuread 5Displacements at boundary points AlD, b/2}, Bla/2, 0) and
C{3a/4, 0) for one-dimensional rod under a Heaviside type forcing
function. nj{o}, v;lo), ¢ (¢} are linear and 8/{¢} is constant,

x . Analytical

zT ceeresss BEM for B=06
bI 3 DE

F-.l Ih X

/l a 1 1

PH{t-0}
LE.lCLZO— /"‘v‘ﬁ v v\ =T
o | \_—Vd;. j . i \\_ |

a 2a 3a 4a Ba 6a 7a Ba
ct

Figuret.38Normal derivative of displacement at point Dla, 5/2) for
one-dimensional rod under a Heaviside type forcing function. n;(al,
vj(0), ¢ (1) are linear and 6 (¢) is constant.
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X,
T Analytical
b[ E Dl vesssese BEM fOr f=04
- -— e x
/! -
a
PH(t-0)
Ly
2ol Bl r
& J ] M L L
a 2a 3a 4q 5a ta 7a 8a 9a

ct
Figured3.7Normal derivative of displacement at point D{a, b/2} for
one-dimensional rod under a Heaviside type forcing function, n,-(o},
vj{), ¢/" (t) are linear and 6™ () is constant,

4 Analytical
2 (PR TR L) BEM for B = 0.5
b[ : De
> —
X
} — !
f—
PH(t-0)
Gl

20 A e

l HIRTRSE T i ! |

hd Y
a 2a 3a 6a 7a 8a Sa

ct
Figured.38Normal derivative of displacement at point D{a, b/2), for
one-dimensional rod under a Heaviside type forcing function. n;{),
vla}, ¢ (t) are linear and 6™ (¢} is constant.
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Analytical
ssanvee BEM for ﬂ=0.8

Ha / . =X‘
2.0

rP A

| 4

@ 22 3a 42 5¢ 6a 72 8a OSa 10a
ct
Figure4.3.9 Normal derivative of displacement at point Dla, b/2}, for

one-dimensionail rod under a Heaviside type forcing function, njla},
vi{a}, ¢ (t) are linear and 67{t) is constant.

X, Analytical
T sessereeBEM for B=1.0
b[ 3 D
]: - E _.X
/ g 1
oo PH (t-0)
200 gt = “\ Wk
4 ; AAD aha | Ao I
a 2 3a 4d4a 5S5a 6Ga 7a 8a 9a 10¢
ct

Figured.310 Normal derivative of displacement at point D(a, /2) for

one-dimensional rod under a Heaviside type forcing function. n;{a},
v}, ¢ (t) are linear and 6" {t) is constant.
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u' (g,t) u{g, t - z—}

(4.3.6)

1

p'(q,t) plg, t = 52)

where u' and p' refer tc the problem studied in section 4.3.1.

Twenty four linear elements were used to
discretize the boundary and QO was subdivided into four
triangular cells as depicted in figure 4.3.12. The time

steps were such that f = 0.6.

U=

Figure 4.3.11 Gecmetry definitions, boundary and initial

conditions for cone-dimensional rod.

L
-
L ]

Figure 4.3.12 Domain and bcoundary discretization for one-
dimensional rod under prescribed initial
conditions.
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Displacements at points (0,b/2),{(3a/16,b/2),
(3a/4,b/2) and traction at point (a,b/2) are presented in
figures 4.3.73 and 4.3.14 respectively. The accuracy of
the results is similar to that obtained in the previous

problem.

Analytical

xl
T wevsness BEM fOr B=06
T A
Al oH
r=7 £,
" X

Eu
Pa
)
T
e
O

2.Q

a {
Point A

/ Paint |
Point H

1.0

a 2a 3a 40 Sa &a 7a 8a
ct
Figure4.3.13 Displacements at boundary point A{0, #/2) and internal
points 1{3a/16, b/2}, H{3a/4, b/2) for one-dimensional rod under
prascribed initial conditions. njlal, vjfol, ¢ (¢} are linear and ™M {¢)
is constant.

X Analytical
ZI ) wsnesss BEM fOr B:O.G
bI = DE
- a/ '_._,_px
ra° o
a 1

Ha | PH(t-0)

bl

L LA'-_J ') 1 ! \ b
3a 4a

1

a - 2a 5a 6a 7a 8a
ct

Figure4.314 Normal derivative of displacement at point Dla, b/2)

for one-dimensional rod under prescribed initial conditions, n;{o),

vi{al, ¢/ (t) are linear and 6 {1} is constant.
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4.3.3 Sguare Membrane Under Prescribed Initial Velocity -

The subject of this investigation is the transverse motion
of a square membrane with initial velocity Vg = C prescr ibed
gver the domain QO depicted in figure 4.3.15 and zerc

displacements prescribed over all the boundary.

The boundary was discretized into thirty two
elements and QO was divided into four cells as shown in
figure 4.3.16. Analytical (see appendix G) and boundary
element method results for displacements at point (a/2,a/2)
and the normal derivative of displacements at point {a,a/2)

were comnpared.

The values of u and p for B = 0.6 are plotted in
figures 4.3.17 and 4.3.18 respectively. Although the
agreement for displacements is reasanable, it was fgund
that a more refined time division was needed to represent
p more accurately. Another boundary element analysis was
then carried out, with B = 0.2 and the results obtained
for p, plotted in figure 4.3.19, show a better agreement.

A final analysis was performed, in which the boundary was
discretized inteo sixty four rather than thirty two elements,
and the value of B was taken as 0.6. The results {see
figure 4.3.20) were only slightly better than those for the
previous case, apparently because unlike the rod analysis,
B<0.6 did not introduce any great amount of noise into the

numer ical results.
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u=Q0
Lt vty

m{

Lol i ig iy
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FTTTTTIT T T rrrrrrrr
u=0 1

Ny

a

Figure 4.3.15 Geometry definition, boundary and initial

conditions for membrane analysis.

L
]
[ ]
[ ]
[ ]
»
L ]

Figure 4.3.16 Membrane discretized into 32 elements and

four cells.
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Figure4.3.11Displacement at point Ala/2, a/2). 32 boundary elements.

XZT Analyticol
0.60-1—:““"“'._ opooBEM for ﬂ:OG
¢l maEB
040'1 IIIIIIIII:_'X
' """-"a 1
- e
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1 { § | ] { 1 N | |
02a 0.6¢a g 1.4a 18a 2.2a
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Figure4-318Normal derivative of displacerment at point Bla, a/2!.

32 baundary elements,
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Figured.319 Normal derjvative of displacement at point Bla, a/2).

32 boundary elements,

X, T ~—— Analytical
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Figure4.3.20Normat derivative of displacement at point Bla, 2/2).

64 boundary elements.,
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CHAPTER 3

BOUNDARY INTEGRAL EQUATIONS FOR TRANSIEZNT

ELASTODYNAMICS

5.1 Introduction

In this chapter the discussicn presented in
chapter three concerning the scalar wave equation will be

extended to elastodynamics.

Linear homogenequs isotropic elastodynamics is
governed by Navier's equations {see expression (2.2.18))
which are frequently presented in the literature in the
following alternative form

2_.2 2 - \
(cq cs)uk,kj + Csuj,kk + fj uy (5.1.1)

where €3 and cg are respaectively the speed of propagation

of dilatational and equivcluminal body waves and

b
£ =—pl . (5.1.2)

As discussed in section 2.2 initial conditions Yok and Yok
(k=1,2,3) are specified at all points inside the domain

of the problem. 1In addition u, and Py must satisfy prescribed

X
boundary cconditions U, = u on T1, and P =P onrl,

(T=r

+T

1)
Equivoluminal and dilatational wave propagation
speeds can also be used to express stresses in terms of

displacements. In this case equation (2.2.2') reads

- 2.2 2
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An integral representation for elastodynamics
can be ckhtained following a procedure similar to that
described in secticon 3.5 for the scalar wave equation,
however, Graffi's elastodynamic reciprocal theorem will be
employed rather than weighted residues. From this, a very
useful theorem which has commonly been used in elastodynamics

will also be illustrated.

5.2 Elastodynamic Fundamental Scolutions

The fundamental singular solution of elastodynamics
which is used in this work is the function uik which satisfies

the following equations
* — 1% = - - -
Uijk,j pu¥y 6ik6(q s)é{t-T1) (5.2.1)
in an unbounded domain 2%, which is free from any imposed
initial condition. The body forces in e@uations (5.2.1)

correspond to a concentrated force in the xi-direction which

is an impulse at t=T1 located at g=s,

In three dimensions, the solution of eguations

(5.2.1) can be written as follows {9}

3r.r 8,
. t! i“k ik . r , r
S (drtrs, ) = | (iR - )Em: ARG -é;)]
r.r
itk 1, r 1 r
+ == |5 (t" -~ =) - =—=§{t' ~ =) (5.2.2)
r ’:Cd Cd CS CS
6,
ik r
+ st - =)
CS CS
where
t' = t-1
Yo
r = |g-s| = (r,ry) (5.2.3)
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It should be recognized that equivalent forms for u;k other
than that described by expression (5.2.2) are freguently tc

be found in the literature {9,80,81,84}.

Egquations {(2.2.4), (5.71.3) and '5.2.2) can be used

to obtain the fundamental traction given by {9}

= g% = g% = 2902y 4% 2 *
Pix = 91k = 91ki®j DECd ch’“im,m‘ij”cs(“m,j*u’ij,k’j“j

(5.2.4)

24 - v
1 {_6 cgt (5 FiFyTy 6ij“k+5ik'j+§j_kri—{
rs r3

_ c
-[a[tl - _,r_] - __?.S(t' - __I'_J (5-2.5}
_ Cs €a Ca
rir]rk '[ r] C;'( r]
+2 —p— |8t - ) = —5dlt -
r cs l: Cq cgl cd:l

The two—dimensional fundamental scluticon of
elastodynamics can be obtained by following a procedure
similar to that given in section 3.6 for the scalar wave
eqguztion. In this case, descending from three dimensions

gives (for details see reference {3} )


http:(2.2.41
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. = 1 ik ik ——
u¥ (4, t58,1) 2ﬁacs 2 t 7 /cé(t ) 2~r 2

r .r ZC;(t')z—rf1

T2
. 2 1y 2 _..2
Jcs(t ] °—r

H(cst'“r) (5.2.6)

-
c |§. r .r 2c2(t")%-r?
-3 hd ZitT) 2= - i,k a _
5| T2 /bd(t y2-r2 e H{cgt'-r)
{Cé(t')z—rz
where
ar ar ri
rri=m=‘m=? . (5.2.7]

Equations ({5.2.4) and (5.2.6) can be applied tc
derive an expression for the two-dimensional fundamental

tracticn, which is given by (see appendix F)

S U
2TpC

Bix -
L WEIe T

pzk(qrt;SrT) H(Cst‘-r)

+ ! 8 H(cst'-r}

\/Cé(t'} 2 e 2 a(CST}

2l (tr)2-r? 3
+|B +

5 r
ik ' -1 2 ik 5
/cé(t }2=r \[[c;(t')z-rj3

2c2(£') 2-r? A
- H{ic t'~-x) + D, H(c _t'-r)
L3 ik /Eg(t')z*rZ B(CST} S




oy 2 2 -
2ck(t") 2r v

Bix * Dix
£ Ty £ 2
L- /bd{t )i ”(Eé(t'}znri]a

[§]

3

ol

2cé(t')2-r2

3

*H{c.,t'-r) + D, H{c tl_r)‘_ (5.2.8)
d ik /CZ(tI}Z_rz B(Cd‘[) d .!
d )
where
- . 3
ARiy = G(28nkr,i+°ik T nir,k)
__ 26, & 3
By = "7y 3n T M,k T AT, T 4 TR LK (5.2.9)
__ 28 ar
le = rz(enkr,i + T r'ir'k)

- = 2 _ 5.2 2
§ = A/2G = (cd 205]/2cS

The fundamental scolutions studied in this section

have the following properties {9}

(1) causality

u;k(q,t;s,r) = 0 whenever CS(t—T)<]g-§| (5.2.10)
({11} reciprocity

uik(q,t:s,T) = ugk(S,-r:q,"t) (5.2.11)
(ili) time translation

ugk(q,t+t1;5,T+t1) = uzk(Q;t:SrT) R (5.2.12)

It should be noted that the properties described
in (i), {(ii) and (iii) above are similar to the ones studied

previously in section 3.4 for the scalar wave equation.

The symmetry of the tensors given by egquations (5.2.,2)

and (5.2.6) implies that {9} the k-component of the displacement



at ¢q due to the i-component of the concentrated force at s
is equal to the i component of the displacement at g due to

the k~-component of the concentrated force at s, i.e.

ugk(q,t;s,r) = uii(q,t;s,T) . {(5.2.13)

5.3 Time Domain Elastodynamic Boundary Integral

Representation

The reciprocal theorem for elastodynamics, to be
derived in this section, effectively relates two
elastedynamic states whose displacement fields will be

denoted by Uy and ui. These are defined over regions

2+ and {*+l'* respectively so that [Q* contains 4+0 as
depicted in figure 3.5.2. The bodies enclosed by [ and I'*

and u¥*

have the same physical properties, and u k

K satisfy

the elastodynanic equilibrium equations, i.e.

. .+ = i
ckj,j Bk 0 in @
(5.3.1)
*‘ . -+ * = i *
ij,] Bk 0 in @
where )
3cu
- AR &
By = bk P 52
(5.3.2)
nzu]t
* = -
S

Using Hooke's law the following integral statement

can easily be inferred

I Uzjcijdﬂ = J oija;jdﬂ . {5.3.3)
2 f



If the divergence theorem [see equation (A.2)) is

applied to both sides of equation (5.3.3) and egquations

(2.2.8) and (5.3.1) are used, the following statement is

inferred

JBEude + J p;ukdr = J Bkuidﬂ + j pkuidr .
{ r 2 T

(5.3.4)

Equation (5.3.4) corresponds to Betti's second reciprocal

work theorem for two distinct elastostatic states with

body forces f and B*.

When equation (5.3.4) is integrated from 0 to t,

and expression (5.3.2) is taken into consideration, the

following eguation is obtained

t t 2%
[ I biukdﬂdt - p[ [W uk dadrt + J
2 Y]

0 Q

t

0

t

[ pﬂuk darart
r

t t 2
3 2u [
- - X
= ’ [ bkui dedr p[ [ 372 ui d@drt + J J pkui dafdt . (5.3.5)
Q o/r

When expression (A.7) is considered it is then possible to

(95.3.6)

wr ite

tazuk t

_— X - - * =

8] 0

tazu? t

i ~ _ _ .

=77 44T = vilg,tiu (g el -viu g, [ vElda, T)v, (q,7)dT
0] 0
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where

{5.3.7)

and

vok(q) = vk(q,O) . {5.3.8)

When expression (5.3.6) is substituted into
equation (5.3.5), the reciprocal theorem of elastodynamics

is obtained, i.e.

£

J j bﬁukdﬂdr - o{ vie,de + p{ vk ou ,do

0’ Q 0 Q
t £

+ J J piudedT = J [ bkuidﬁdr - pJ vkuﬁdﬂ (5.3.9)
olr olq Q

t
+ p[ vokugkdﬂ + [ [ pkuideT .
Q r

If cne of the elastodynamic states is taken at
a time t'=t-1 the reciprocal theorem given by equation
(5.3.9) can be cast into Graffi's theorem, in the form in

which it is presented in references {9 and 10},

In order to obtain a boundary integral eguation for
the problem being studied, one of the elastodynamic states
in expression (5.3.9) will be considered to be that governesd
by equation (5.2.1). In this case, due tO the reciprocity

property



2. % 2%
S (5.3.10)
EZ 5tz ¢ 3.

and as a result of the causality property

+ +
. = * . =
{ v;k(q,t,s,t )ukdﬂ [ vkuik(q,t,s,t 1dQ o . (5.3.11)
Q f

Then, if the time integration limits indicated in eguation
(5.3.9) are taken to be zero and t+ (t+ = t+g, £+0)

the following eguation is obtained

£* £*

J ‘ ukéiké(q~s)6(t—1)dﬂd1 + [ J pikudedT

0 ’Q o0 -7
et

= ‘ ‘ pkugkdrdt + p{ Vokugikdg - D‘ Vgikuokdﬂ (5.3.12)
g0 T 2 Q
et

Taking account of the Dirac delta properties

"

1 ] u, 8, 8(q=s) S(t-Tydfi(q)dT = u, (s,t) (5.3.13)
0 "9

the following integral statement is then obtained

“+

t
ui(srt) = J ‘ u;k(Q;t=s;T)Pk(Q:T)dF(Q)dT
g T

+

t
- [ { p¥, (2,t58, T)u (Q,T)aT(Q)art
g °T



+ QJ u;ik(qrt:S)vok(q)dQ(q}
Q

- p] Vaik (detisiu (D dR(q)
¢

+

t
+ 1 } ugk{q,t;s,T}bk(q,T)dQ(q)dT . {(5.3.14)
0 ‘%

Equation (5.3.14) gives the ui—component cf the
displacement, at an internal point s, as a function of
boundary tractions and displacements, initial conditions
and body forces. When s+$% a procedure similar to that
discussed in chapter 3, for the scalar wave equation, can
be followed giving

+

t
cik(S)uk(S,t) = J ‘ UEk(Q:t:S;TJPk(Q:T)dF(Q)dT
D ‘T

rt
= J ‘ p:k(th?S:T}uk(QrT)dr(Q)dT
0 T

+ DI ks (@S vy, (@da(q) (5.3.15)
1%

- oJ rix(drtiSiug, ()da(q)
8
_+

T
+ [ J u¥, (3,£;8,1)by (4, 7T)d@{g)dr
00



where
_ 1
cij(S} = 2613. (5.3.16)
whenever the T boundary is smooth, t should be reccgnized

that the integrals indicated in equation (5.3.13) are to be

calculated in the Cauchy principal value sense.

Equation (5.3.15) can alsoc be used when the
source point is outside Q+I'. In this case cij must be

regarded as being equal to zero.

Additional information on how equation (5.3,15)
can be obtained from equation (5.3.14), for both, three
and two dimensions, can be found in {9,80,81,84}. In these
references, discussions concerning expression ($.3.16) are

also considered.

In crder to implement a numerical time-stepping
algorithm to solve the three~dimensional boundary integral
equation analytical integrations must be performed first,
to eliminate the Dirac-delta functions and its derivatives
that appear in equations (5.2.2) and {5.2.5). This matter
is discussed in references {80 and 81} where two-dimensional
elastodynamic problems are analysed using three~dimensional
fundamental sclutions. In these papers the two-dimensional
problem is considered to ke a cylinder, whose axis has

infinite length and is parallel to the x_-direction, as

3
explained in section 3.6. Aas this approach is essentially
three-dimensicnal, an extra integration with respect to

the coordinate x. is required.

3
In the present investigation, two-dimensicnal

elastodynamic problems are analysed using a two-dimensional



boundary integral equation, i.e., the fundamental solution
considred i1s that given by egquation (5.2.6). In order to
implement a general two~dimensional numerical time-stepping
algorithm, some additional transformations must first be
carried cut in order to eliminate the derivatives of
Heaviside functions that appear in egquation (5.2.8). This

is discussed in the next section.

5.4 Additional Transformations to the Two-Dimensional

Boundary Integral Equation ¢of Elastodynamics

In the numerical analysis concerning two-dimensional
elastodynamics, initial conditions and body forces will not
be considered. Consegquently when u;k and pzk given by
expressions {5.2.6) and (5.2.8) respectively, are substituted
into equation (5.3.15) and manipulations similar to those
described in section 3.7 are carried ocut the following

expression is obtained

-+

t
_ 1 Ine
ik (Biuy (S,t) = ZToc [ J (B LaMy=By Loy
o dp

3 [ -
+ D, L0 )u H [cst ]drch

+

t
c
- _§. - 3 1o
= { { (BikL1N1+DikL1O1)ukHE:dt ]deT
d
0 ‘r
t+
1 v
vE; [ (AikL2+DikL2N2)kaEst r]drdr
‘o T -
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f
C
=1 1o
- =2 J } DikLTNTVkHE:dt ]dI‘dT
0T

[# 1)

t

(8., L+ PSS H ' ras

* (833 Lg*Fyply +T5, Lol pyHC t ~r|dra
0 T

t+
Cq -1
- EE ‘ J (F iy Dy +JikLTN1)pkH[?dt —%]aFdT (5.4.1)
Q0 -7
where Aik' Bik and Dik are given by expression (5.2.9),
P _ Sik
ik r? '
(5.4.2)
r .r
170k
Jix = z
and .
_ . = 2 by 2 -2
L.] = L'I (Q,t:5,1) E:d(t ) r]
M, = M, {Q.8;5,T) = cdt'"r
{5.4.3)

N, = N,(Q,t;S,1) 2cé(t')2-r2

0, = 0,(Q,tis,1) = 3¢ t'r2-2c§(t')3—r3

4

L2, M2' N2 and O, can be respectively obtained from LT' MT'

2

N, and ©, replacing c

. 1 by Cq in expression (5.4.3).

d
In items (i) and (ii) described below details
are given of the modifications required to obtain equation

(5.4.1) from expression (5.3.135).

(i) Applying the same procedure used in item (i) of section

3.7 it is possible to write
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t+{
2 -
| AL WL, STe T Hl:c:st —‘drd't
o it s -
] [
= o | PixYok ozHrC -r]dl‘
S
T
(5.4.4)
t+r
-1 -
2 [ AikvkLzHE:St ]dl‘d'r
s
o0 ‘Tl
t+
- t 3 [ -
J [ A upc t L2HE:t ]dI‘dT
o °-°r
where
Loy = Ly (Q/t58,0) . (5.4.5)

The first term on the right-hand side of expression
(5.4.4) was regarded as being equal to null because non zero
initial conditions have not been considered in the elastodynamic

formulation.

(ii) The remaining term in equation {5.3.15) that requires

to be further manipulated is given by

t+
I—J [ kk223[CT)H[t-]drdT
0 'r
(5.4.6)
-+
1 [ N 3
=§ Dy ukszzﬁ?HE:St'—]drdr
i 0

If expression (A.1) is used,integration by parts with

respect to time gives
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vkL2N2HE:St'—:IdT (5.4.7)

2 ¢ -
0, 5o H[ t ]dT
In view of the causality property and the fact that
= - H 1 3 2 ] 21 3
(L2 5) ( 2c (et T+3cierr?iLl (5.4.8)

the following expression results

1
I = = — H t - d.[l
Cq ‘F ik“okNo202 [ ]
t-l-
1 -
-5 J D VN, L ZHF:St'—rJdFdT (5.4.9)
S g ir -
e’
3 £ z 3 -
+ ,Dikukpcs(t') 3cst'r]L2H|:cst' :ded'r
Jo | -
0T
where
Ngs = N, (Q,t;5,0). (5.4.10)

The first term on the right-hand side of expression ({5.4.9)
was not included in equation (5.4.71) because U, was taken

as being equal to zero.

The operations carried out in sub-sections (i} and

(ii) above refer to terms in equation (5.4.1) that account
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for waves which propagate with speed Ce- The term in
expression (5.3.15) given by

t
| . -
r

which refers to dilataticnal waves also has to undergo
additional transformations. The final expression for this
case can easily be obtained if C. is replaced by Cq in

eguation (5.4.9).

A close examinaticn of equation (5.4.1) reveals
that some integrands in that expression are singular at the
wave fronts of both egquivoluminal (r = cst'} and dilatational

(r = c,t'} waves, represented by the Green's function.

a
These singularities are ¢f the same type previcusly discussed
in section 3.7 for the scalar wave equation, i.e., the

functions being integrated behave like

1

_— (5.,4.12)

An additional difficulty in the two-dimensional
elastodynamic houndary element formulation is discussed in
reference {81}and refers to the singularities that appear

when r-0 and

Cs{t-T) #0
(5.4.13)

Cd{t"T) # D

These singularities, however, are only apparent ones and
disappear if contributions from similar terms referring to

equivoluminal and dilational waves are calculated together
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in expression (5.4.17). The type of manipulations reguired
will now be discussed by considering the integrals that

inveolve Bik in expression (5.4.1).

When considered alone BikLZNZ and BikL1N1 behave
like 1/r?® when r+0. However these singularities can easily
ke eliminated from the integral equation if it is realized

that

_ d
{(5.4.14)
b ol 1y 2 (222
- 5 rq,&cd cs}(t ) (cd cshr]L1L2
T Tik —1 —1 ’
Cd(ch2L1 +CSN1L2 )

Therefore, the only singularities present in the numerical
analysis are those that occur when r and t' go to zero

simultanecusly.
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CHAPTER 6

BOUNDARY ELEMENT METHOD FOR TWO-DIMENSIONAL

TRENSIENT ELASTODYNAMICS

6.1 ITntroduction

A time-stepping scheme to solve equation (5.4.1})
will be discussed in this chapter. The procedure employed
for two-dimensicnal transient elastodynamics is similar to
that already discussed in chapter 4 concerning the scalar

wave eguation.

After the boundary unknowns u, (5,t) and P;(S.t)
have been obtained, internal displacements ui(s,t) can be
calculated by applying the integral equation that results
from eguaticn (5.4.17) when S is replaced by s and cik(s}
is made to equal to Gij' In elasticity problems it is
important to compute stresses as well, The scheme implemented
in secticon 6.2 to calculate internal stresses is similar o
the simplest one used in finite elements. Triangular cells
are employed and stresses at their centroids are obtained
by carrying out derivatives of displacements, which are
linearly interpolated inside each cell as a function of
the displacements at the cell nodes. Following this
procedure one avoids performing analytical derivatives of
the integral eguation for internal displacements.

This alteraative procedure however, should be zttempted in
future research Decause it almost certainly yields mare

accurate results.

Interpolation functions of the type given by

equation (4.2.1) are also used to approximate U and pk in
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eguation (5.4.71). Analytical time integration can also he
carried out, resulting in expressions which are considerably
longer than those previously derived when investigating the
scalar wave equation (see chapter 4). A certain degree of
care must be taken when integrating analytically with respect
to time. If conveniently wmanipulated, the final expressions
obtained will have no singularity at the fronts cf the
equivoluminal and dilatational waves represented by the
Green's function. Convenient operations like those
described by expression (5.4.74) must also be carried out

in order to remove apparent singularities that cccur when
r+0. Conseguently the only singularities which remain occur
on the first time step, when r+0, and are of the same type
as those for two-dimensional elastostatics, i.e., the
integrands behave like 1/r and Inr on the boundary integrals

involving Uy and Py respectively.

6.2 Numerical Implementation

As in section 4.2, the implementation of a numérical
scheme to solve eguation (5.4.1) requires the consideration
of a set of discrete points Qj, ij=1,...J7, on the T boundary
and a set of wvalues of time tn' n=1,...,0, uk(Q,t), vk(Q,t)
and pk(Q,t) can be approximated using the same set of

interpolation functions shown in secticn 4.2.171, i.e.,

J N

m —m

u, (Q.,t) = é (E)ns(Q)u .

k qu mLT ] kJ

J N m

_ ae () —m
v, (Q,t) = = =0 .
) (QrE) jLT m; It N3 QU
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J
_ m —m
Pe(Q:8) = 1 87 () vy (@B (6.2.1)
where m and J refer to time and space respectively, k=1,2
relates to the xk-direction and

—1m _

(6.2.2)

—m
ij Pk(ijtm)

When equation (5.4.71) is written for every ncde 1
and also for all values of time tn' and uk, Vk and pk are
replaced by their approximations as given by expression
(6.2.1), the following system ¢f algebraic equations is

then obtained

c., (5,)u + m—— H, .. u, .
=1 ik*71° 7kl 21TpcS k=1 m=1 3=1 113k "kj

{(6.2.3)
1 2 N J —nm  =m
T Zmosg k§1 rn£1 1zwailjkpkj
where
t
Fom -Jn‘f(a T3, - B, TN, + D..T30.)
iljk ‘[ ik22 T BixlaNa * Pixka®
0 TL
- 2% (-, T.F, + 0.,T36, 7 6™ (eI, (@) (6.2.4)
p ik~ 1 ik 1] j -2
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r _ I _1 _
t(sikL2 T Eiby T IikDpNy)

(6.2.5)
o . 1
- — It T N m ,
p (F Ly + J;,LN,)e (T)uj(Q)}deT
and
i? = LY (Q,¢t ,sl,r)H[%dt'-fj
=0l o
M, = MJ!IQ,t ;Sl,T}H a t'-r
! 1 n [:d ] (6.2.6)
¥ -
Ny = N?(Q,tn;sl,t)H[?dt'-?J
—= a
o? = 01(Q,tn;sl,r)ﬁ{6dt'—fj
fg, ﬁ%, ﬁ% and 52 can be obtained from f?, ﬁ?, ﬁ? and 6?
respectively, replacing C3 by Cg in expression (6.2.6). It

should be realised that ¢ in expression (6.2.6) is an

exponent, not an index.

Cnly constant time steps, tm’ will be considered
in the two~dimensicnal transient elastodynamic numerical
analysis. In this case causality and time translation
properties can be assigned to ﬁgTjk and EQTjk and the discussion
conducted in section 4.2.1 concerning the scalar wave
equation can be extended to elastodynamics [see figure 4,2.1

and expression (4.2.11)].

In the numerical analysis undertaken in this
chapter ¢m(TJ is linear, Sm(T) is constant, nl(Q) and vl(Q)
are constant, and linear discretization is used to approximate
the T boundary. The time interpolation functions ¢m(1}
and Bm{r} given by expressions (4.2.12) and (4.2.18)
respectively can then be substituted into eguations (6.2.4)

and (6.2.%) and the resulting expressions can then be

integrated analytically with respect to time.
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The integrations over the T boundary are carried
out numerically, using Gauss quadrature formulae for all
time steps, but the first. When n=m=1 and when it is
necessary to integrate over the element in which the source
point is (j=1), the integrand of Ei&jk has a singularity
of the type Inr when r+0. In this case it is advisgable to
carry out analytical integrations via the procedure cutlined
in appendix F. When j=1 the integrand of ﬁi&jk behaves
like 1/r when r=+0. This singularity is of the same type as
the one which occurs when studying elastostatics., As
ceonstant elements were used the principal value of integrals

11 ;o
i13k {j=1) are equal tc zero.

that appear when computing H
However this is not the case when higher order elements are
used to approximate displacements. In this situation,
principal values that are not zerc can be calculated

analytically.

It is now convenient to initial each node j, with
numbers 2j-1 and 2j referring, respectively to directicns 1

and 2 of that node, as shown in figure 6.2.1.
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2]
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r

L
-

X1
Figure 6.2.1 Glcbal numeration.

Consequently, the following relationships can be written

~—T - nm
g T Y29+k-2

-m  _ _nm
Prj T P2jek-2 (6.2.7)
—ﬁnm - Hnm
iljk (21+1i-2) (23+k=-2)
ghm = g
ilik (21+1i-2) (2j+k=-2)
Therefore, when constant elements are used,
-n _ s Tn -n _ n
Ciy (530U = +59843 Wy = U4y T 2OUny44 9« (6.2.8)

Taking full account of expressions (6.2.7) and (6.2.8),

equaticn (6.2.3) can be written as

2J
a ! z ERART LA L
i 2rrocs = iy 73 2mpc

] | (6.2.9)

ni‘] 2ZJ nm I ni‘l 2EJ nm m
- Ho. u, + ) G.. p.
m=1 =1 2 I @31 4=7 M
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Equation (6.2.9) can also be cast into

EE:§E+.B_ f6.2.10)

where H and G are square matrices of order (2Jx2J) and

u, p and B are vectors.

wWhen boundary conditions at a time t, are considered
and equation (6.2.10}) is conveniently recrdered equatiocn

(6.2,10) becomes

Ay =c {6.2.11}

where, in similarity to equation (4.3.3), the vector y is

formed by unknowns uj and Pj at boundary nodes.

After equation (6.2.71) has been solved displacements
at internal points can be computed using the boundary equation

for such points.

In order to use expression (2.4.4) to calculate
~internal stresses it is first necessary tc calculate the
derivatives of the displacement components with regard to
the rectangular coordinates xj. In this thesis this is
accomplished numerically using triangular cells. Linear
interpolation functions are used to approximate components

of displacements U {(k=1,2) inside each cell, i.e.,

u, = H1U1 + u2U2 +‘U3U3
(6.2.123

u, = u1U4 + U2U5 + “3U6

where My is given by expression (4.2.32) and Uj (3=1,86)

are the components of the displacements at the cell nodes

as shown in figure (6.2.2).



Figure 6.2.2

[
o

X1

When expressions (2.4

following equation is obtained

where

g=D u'l
(O14
g = 1%2
1922 .
3 +2G 0
o C 2G
A 0
H 1 2,19 3,1

.4} and

(6.2.12)
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Triangular cell used to calculate stresses.

are used the

(6.2.13)

(6.2.74)

-
My, 172
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and

e = = m—— . (6.2.15)

6.3 Examples ~ Two-Dimensional Elastodynamics

In this section the numerical procedure previocusly
discussed in section 6.2 is illustrated by a series of
examples comparing boundary elements with other numerical

methods.

In all of the problems examined, the boundary
integrations shown in equations (6.2.4) and (6,2.5) were

performed using a maximum of twenty Gauss points,

Further on in this section reference will be made
t0 the parameter 8 given by eguation (4.3.4). It is
important to realize that in elastodynamics Cq is used to

compute such a parameter, i.e.,

g = . (6.3.1)

6.3.7 Half=Plane Under Discontinuous Prescribed Stress

Distribution ~ Cruse {61-63} used the Laplace transform to

solve transient elastodynamic problems. In this approach

the boundary element method is used to find solutions in

the transformed domain. The problem is solved for various
distinct values of the Laplace parameter and then a numerical
algorithm of inversion due to Papoulis {64} is employed to

find time domain solutions.

In his investigation, Cruse studied the problem of
a half-plane (see figure 6.3.171) initially at rest, with

uniform compressive tractions = applied as a step function
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in time, as given by

= = -
Py {(X,,0,t) P (%4,0)8,,H(t-0) (6.3.2)
wher a
pOHE:.l-(-b)_‘ D-H(x.l-b)] whenever x, = 0
PO = {6.3.3)
0 whenever Xy F O
X5
o4
PO
P 0 TIME [sec!
Py
p‘: 92:0 m Dl: 92:0
’ .o ,/ < - LRJ'. ,./ . A _X-lh
RV SV A A S o
- i s , d ’ ‘ < /
PR : / s ay ’ S ’ LT
) . / , , ) ’/ //' s '
// _ // /} B ‘ ) s / yd P / -
s - 4 e P .
f/ PR J/ R s .

Figure 6.3.1 Half~plane under discontinuous boundary stress

distribution.

The first example was taken tc compare with Cruse’'s
results, and the following numerical values were adopted

for the constants ¢f the problem
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A=G = 10°% psi

c 3.27x10"% ips, ¢ 1.86x10" ips

d s

b 3000 inches, P, 10% psi .

Cruse compared his results with the oOnes presented
by Craggs {106}, who solved the probklem of an uniform
compressive stress applied over half the surface of the half-
plane, as a step function in time, Craggs results are also
presented here, but complete correspondence with none of
the boundary element analyses is 0 be expected, because
Craggs' load is different from the one shown in figure 6.3.1

and Rayleigh waves are included in his solution.

Here and in Cruse's work, the surface of the half-
plane was discretized into twenty equal boundary elements,

each of them having a length of 6000 inches (see figure 6.3.2).

When evaluating stresses it must be recognized
that the bigger the cell the less representative the
stresses will be. Conversely, very small cells must also
be avoided because when the differences between cell node
displacements are too small contribution to stresses due to
numer ical errcors can become excessively large., It is also
important to notice that boundary element results for
internal points close to the ' boundary are ncet good, and
therefore cell ncdes c¢lose to I' should be aveoided.
Consequently, in view of the three restrictions just mentioned,
the best cell that can be used to calculate stresses at pecint

D{0,-b) is the one illustrated by figure 6.3.2.
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o

Figure 6.3.2 Boundary discretization and internal cell for
the half-plane under discontinuous boundary

stress distribution.

Not only the boundary discretization but also the
parameter B must be chosen properly. If B is too large,
errors due to contradicting the causality property and
errors as a result of bad time interpolation will
contribute to reduce the degree of accuracy of the results.
Four values of 8 were tried; .13, .25, .50 and 1.: the
solutions for the two larger values of 8 being unacceptable.
The numer ical results, for B being egual to .13 and .25 were
similar, consequently 8 = .25 was chosen to be the best of

the four values caonsidered.

In figure 6.3.3, vertical displacements at boundary
points A{-4b,0), B(-2b,0) and C(0,0) are plotted. It should

be recognized that P, S and R in figure 6.3.3 stand for the
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pericd of time that a dilatational, an equivoluminal and a
Rayleigh wave respectively take to travel from the edge of

a disturbance t¢ a point.

The agreement with Cruse's results 1s good for
points B and C, but no comparison could be considered for

pcint A because Cruse terminated his analysis at t = .5s.

The time-stepping results also agree well with
Craggs' solution for the point C until + = R, where R is
the time the Rayleigh wave takes to propagate from the edge

of the disturbance to the point C.

In figure 6.3.4 the vertical displacement at
the internal point D{0,-b) is plotted. The applicable
range of Craggs' scolution was taken by Cruse to be t<P2,
where P2 is the time it takes the primary wave to propagate

from the edge of the disturbance to the point D.

Figure 6.3.5 displays the stress 952 at the
internal point D. The accuracy is lower than for displacements
because stresses are obtained from numerically computed
derivatives of displacements. For this c¢cell in particular,
there are two other factors that contributes to reduce the
stress accuracy; firstly the cell is toc large and secondly

it has two nodes which are close to the boundary.

The jump condition given by equation (2.2.25)
must be satisfied at the wave front. Therefore at t=0

it is possibkble to write that at the boundary point C
a, = 0

.1 1 (6.3.4)
Yy T oes Po ’
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Figure 6.3.3 Half-plane under discontinuous boundary stress
distribution. Vertical displacements at the
boundary points A(-4b,0), B(-2b,0) and C(0,0).
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Figure 6.3.4 Half-plane under discontinuous boundary stress
distribution. Vertical displacement at the
internal pocint D(0,-b).
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Figure 6.3.3 demonstrates that the results of the numerical

analyses obey equaticon (6.3.4).

Craggs' solution also predicts that when the

wave front reaches the point D the stress o > Jumps from

2
zero to “Py- This can easily be verified by the inspection

of figure 6.3.5.

As the wvalue of the jump in the stress sy is
known, it is not difficult to conclude that when the wave
front reaches the point D, ﬁ2 jumps from zero to the value
given by expression (6.3.4). Inspection of fiqure 6.3.4
demonstrates that this jump is well represented by the

numerical scluticons under consideration.

Finally for this example it can be concluded

that

{a) The displacements obtained using the time-stepping
technique were close to the displacements obtained

by Cruse.

(b} Despite the large cell used, the time-stepping technigque

gave results for stresses which were acceptable.

(c) Both the Laplace transform and the time~stepping
technique gave results that followed very closely the

predicted physical behavicur o¢f the problem analysed.

6.3.2 Half-Plane Under Imposed Boundary Velocity - In this

application, the half-plane 1is initially at rest and part of
its surface is forced to move with constant velocity in the
vertical direction. The prescribed bhoundary conditions

for this problem are shown in figure 6.3.6 and are given by
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Figure 6.3.5 Half-plane under discontinuous boundary stress
distribution. Stress g at the internal point
D(0,-b). 22
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Figure 6.3.6 Boundary conditions for the half-plane under
imposed boundary velocity.
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u;, = -SizUO(X],O) t H{(t~-0) (6.3.5)

where

Y X{(—Sblj[?—ﬂfx1-5bf] whenever x, = 0

UO(XT'O) = (6.3.6)

0 whenever X5 # 0

The traction at a boundary point which has not
yet been reached by the wave generated at the points of the

surface where the velocity is discontinuous is given by

p. = —pcdﬁi2vo(x1,0)ﬂ(t—0} . (6.3.7)

i
Expression (6.3.7) can be obtained from the uniqueness of

Craggs' sclution and from the causality property.

The boundary discretization and cell, flrst used
in this analysis are shown in figure 6.3.2. Four values of
g: .13, .25, .50 and 1. were again considered and 8 = .25 was

chosen to bhe the best for this analysis.

The vertical displacement and the stress Tsn at
the internal point D are plotted in figures 6.3.7 and 6.3.8
respectively. Inspection of these two figures shows that
the numerical results cobey eguation (2.2.25). At t = b/c:d

the stress o,, jumps from zero to -pc ﬁo as predicted by

2 d
Craggs' solution, and as expected, the agreement with
Cruse's solution is better for displacements than for

stresses.

In figures 6.3.9, 6.3.70 and 6.3.11 tractions at
the boundary points E{-6b,0), A(~4b,0}, B(-2b,0) and C(0,0}
are plotted. Tractiocns at points E and A obtained with both

boundary element techniques were not as close to each other



141

as the displacements in the previous analysis. At points

C and D both numerical techniques gave the results predicted

by expression (6.3.7). The time-stepping scheme results
oscillated slightly around the analytical solution. This

fact had already been noticed in chapter four when investigating
problems governed by the scalar wave equation., Apparently
oscillation can Qccur whenever boundary displacements are

prescribed and B is too small.

Another analysis in which B was regarded as being
equal to .75 and the size of the elements taken to be equal

to 2000 inches was also undertaken.

Displacements and stresses at D were similar to
the ones obtained with the first discretizaticn, however
tractions varied. A comparison of figures 6.3.9 and 6.3.72
demonstrates that the boundary discretization depicted in
figure 6.3.2 is too coarse, resulting in bad numerical results

for tracticns at the boundary peints A and E.

In figures 6.3.13 and 6.3.14 tractions at points
B and C are plotted respectively. These figures show that
by using B = .75 the oscillation of the numerical results

was practically eliminated.

Finally as far as this problem is concerned it

can be concluded that

(a) The displacements obtained using the time~stepping

technique agreed with the results obtained by Cruse,

{b) Excessively small values of B should be avoided in
problems in which displacements are prescribed over

portions of the boundary.
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(¢) Both, the time-stepping and the Laplace transform
techniques, yielded results which very closely
followad the predicted physical behavicour of the problem

analysed.

6.3.3 Half-Plane Under Continuous Prescribed Stress

Distribution - In this application the time-stepping technique

discussed in this work is compared with the finite-difference
model implemented by Tseng et al. {11}, In that report a
transmitting boundary was developed and used together with

the generalized lumped parameter model presented in references

{107~109}.

The proklem to be analysed is depicted in figure
6.3.15, The half-plane is initially at rest and its surface
i3 disturbed by a vertical traction which is ¢ontinuous

in both time and space.

The following numerical values were adopted for the

constants of the problem

E = 200 ksi, v = .15

cq = 3.288x10"% ips, c, = 2.112x10"% ips .

The criterion given by Tseng {11} to choose the

finite difference mesh requires that

Ax
tr > 2(¥ (6-3.8)

where tr is rise or decay time of the applied pressure and

AX gives the mesh refinement. When tr = 20 msec, Ax < 27.4 ft
is obtained. Tseng chose Ax = 10 ft and the discretization
as depicted in figure 6.3.16, where the position selected for

the cylindrical wave transmitting boundaries can alsc bhe seen.
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The boundary element discretization and cells

used in the analysis are shown in figure 6.3.17,

According to reference {11} the time increment At,
used in this finite-~difference analysis, must obey equation

{6.3.9) and At = 1. msec was adopted.

At < .433-25 (6.3.9)

- d
For the boundary element analysis, B was taken to

be equal to .5, which gives
At = 3.65 msec .

The time history of the vertical displacements plotted
in figures 6.3.18, 6.3.19 and 6.3.20 shows an acceptable

agreement for the time interval considered.

In his research Tseng carried out another analysis
using a pair of transmitting boundaries which enclosed a
smaller rectangular region whose side lengths were equal
to 90 £t and 150 ft. The two finite-~difference analyses
showed that the larger the region enclosed by the transmitting
boundaries, the closer finite difference and bcundary elements
results were. Therefore it is quite justified to suppose
that the major proporticn of the difference between the
displacements ¢btained with the two numerical methods under
consideration is caused by errors generated at the transmitting

boundar ies.

Tseng also presented the time history of the
vertical displacements for the point G(150',10') obtained
with the 90'x150' rectangular region. As G is located

exactly on the transmitting boundary it can be expected that



152

‘UOTINGT IISTP
Ss9I3Ss poqrassaid snonulijuosd adpun asueTd
~JTeY 8yl I0J UQTIRZIIDIDSTP Juowadfd Axepunog /[ €°9 ainbrg

IVY ¥

L
ON3ISL HLIM dIHVIrWOD 1T 1
ANINIITIDSIQ WO SSTULS g Ok oy ._

A=

—




153

finite-difference displacements at this pcint will have a
low accuracy. The point G 1s also a critical one in the
boundary element analysis because it is too close to the
boundary of the half-plane. Results obtained with the two
methods are shown in figure 6.3.21. As it was expected the

agreement is not as close as recorded previously.

Figures 6.3.22 to 6.3.24 describe the time history

of stresses at points A(45',75'), B(75',75')} and C(5',75").

When the load is applied as a step function in
time, finite-differences can not be used because of the
restrictions imposed by eguation (6.3.8). A possible way of
overcoming this difficulty is by replacing the jump by a
slope. In corder to check the errors introduced by such a
procedure the problem displayed in figure 6.3.15 was
re-investigated using boundary elements, but this time the
load was abruptly applied at t = 0 ({see figure 6.3.25%). The
time history of stress plotted in figure 8;3;; shows that
a complete agreement occurs with the previous analysis during
late times, but during early times the results are

different.

Finally, for this example it can be concluded

that

(a) The solutions using both the finite difference and

boundary element methods are in good agreement.

{b) The time increment regquired by boundary elements was

bigger than that necessary for finite differences.

(c) When the time variation of the load includes jumps,

boundary elements are more suitable than finite differences.
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6.3.4 Semi~Infinite Beam - This application consists of a

semi-infinite beam simply supported along its edge (see
figure 6.3.26) and subjected to a suddenly applied bending
moment

M, = M H(£-0) . (6.3.10)

The Poisson ratio for this plane stress problem

was taken to be 1/3.

The boundary element mesh consisted of thirty six
equal elements as depicted in figure 6.3.27 and B was

taken as equal to .5.

A finite element analysis of this problem was
carried out by Fu {110} who used the mesh depicted in
figure 6.3.28 in his numer ical solution. Transverse
aisplacements along the axes of the beam obtained with both
numerical techniques are shown in figure 6.3.29. Within
this same figure results obtained from the beam theory by
Boley {111} are alsc plotted. The displacements depicted

in figure €.3.29 refer to

t = = {6.3.11)

where r is the radius of gyration of the beam cross section

and s is the one-dimensional wave propagation speed {111}.

As it was expected none of the two-dimensional
numer ical analyses agreed completely with the analytical
solution obtained from the beam thecry. However the boundary
element results show that the two-dimensional solutiocn
appears to be closer to the beam theory than initially

indicated by the finite element method.
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Figure 6.3.28 Finite element mesh for the semi-infinite

beam.
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Figure 6.3.29 Transverse displacement along the semi-infinite
beam at the time t = 5r/c0.
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6.3.5 Hole in an Infinite Plate - In addition to the beam

analysed in the last section, Fu {110} also studied another
problem which consisted of a hole in an infinite plate and
compared results with those obtained by Chow and Koenig {1123}

using the method of characteristics.

The lcad in this example consists of a constant
internal pressure suddenly applied on the hole surface as
depicted in figure 6.3.30. The applied pressure is
independent of 8, therefcre the stresses and the displacements
calculated with respect toc the system of polar coordinates

shown in figure 6.3.3C are also independent of 6.

The Poisson ratio for this plane stress analysis

was taken as being egual to 1/3.

The boundary element discretization and cells used
in this analysis are depicted in figure 6.3.31. The parameter

B was taken to be egual to 0.5,

The finite element discretization used in this
analysis is not presented in reference {110}, however an
idea of the number of finite elements and time increments
reguired in this sort of problem is provided by reference

{65}.

Figure 6.3.32 depicts the time history of radial
and circumferential stresses at points A, B and C displayed
in figqure 6.3.37. The agreement is acceptable for the
internal points, but the boundary element results do not
represent well the hoop stress at the boundary point A,
Another analysis was then carried out with B = .2, and

the stress at the point A, displayed in figure 6.3.3%¢,
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improved considerabkly. Further reduction of the time
increments would certainly improve the boundary element

results, however this was not done due to limitations on
computer time available.

Firnally it should be recognized that the stress
Tag at the boundary point A was calculated as described in
appendix T.
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CHAPTER 7

GENERAL DISCUSSION AND CONCLUSIONS

At present there exist a number of papers (see
Chapter 1) which formulate the boundary element method for
solving transient wave propagaticon problems using three-
dimensional time domain boundary integral eguations.
However the only general approaches that use two-dimensional
fundamental sclutions are those discussed in Chapter 1,
which employ either Laplace or Fourier transforms to
eliminate the time dependence of the problem. S0 far the
only general numerical procedure that has been developed to
analyse transient wave propagation problems in two dimensions,
using time dependent fundamental sclutions, considers the
two-dimensional case as being a particular three-dimensional
proklem. Using this approach it is possible to benefit
from the existing knowledge regarding the three-~dimensional

case.

In this research, two-dimensiocnal time dependent
Green's functions were used to deduce integral equations,
amenable to numerical sclutions of two-dimensional transient
wave propagation prcblems. A boundary element scheme
was applied to solve numerical problems governed by the
scalar wave and Navier's equations. Therefore the proposed
method can be used to analyse plane-stress, plane strain and

antiplane motions,

In chapter 2, a revision of the linear elastodynamics
was provided, with the purpose of briefly investigating the

basic theory and also simultanecusly introducing notation
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and terminology that would be employed later.

Although this research was primarily concerned
with two-dimensional applicaticns, the three-dimensional
problem was also discussed. In this way some important
discrepancies of the behaviour of twec- and three~dimensional
waves could be shown. The three-dimensional formulation was
alsoc required to obtain two-dimensional boundary integral
equations, bhecause in the procedure applied the method of

descent was employed,

One of this thesis' objectives was to derive the
boundary integral equation (3.7.18) which constituted the
basis for developing a time-stepping scheme to solve
numerically transient two-dimensiconal problems governed by

the scalar wave equaticn.

Usual time marching schemes treat each time step
as a new problem, and consequently at the end of each time
interval, values of displacements and velocities are
calculated for a number ¢f internal points, in order tc use
them as pseudo-initial conditions for the next step, i.e.
the integral equatien (3.7.18) is applied from 0O to At;

At to 24t etc. In this thesis however, the time integration
process is always considered to start at the time '0!

and so values of displacements and velocities 40 not need to

be calculated at intermediate steps. With this procedure,

the domain discretization is restricted to regions where source
density and initial conditions do not disappear. The

domain integrations at a time step 'j' are conseguently

avoided at the expense of having to calculate time

integrations for all time steps previous to 'j'. Two sguare
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matrices of grder (JxJ) must be stored for each time step:
J being the number of boundaries nodes. Therefcre when
results for very late times are required a computer with a
large storage area is needed. The first time marching
schems discussed previocusly is useful for bounded domains
in which late time sclutions are sought, in all other cases

the second scheme is more suitable.

Linear discretization was used to approximate the
geometry of the T boundary. However it shonld be recognized
that it cculd be an advantage to use higher order discretizations
when analysing prob_ems with more complicated geometries

than those consgsidered in secticon 4.3.

QOf the three distinct combinations of interpolation
functions used to approximate u and p on the boundary,
combination 2 was considered the most suitable one (see

table 4.3.71 reproduced below).

Cambinatian Interpolation function
nyiQkand »;(Q) ¢ (r} 6™ )
1 Linear Linear Linear
2 Linear Linear Constant
3 Consgtart Linear Constant

Table 4.3.7 Combination of interpolation functions,

In a considerable number of wave propagation
problems, p can be discontinucus and the use of continuous
Bm(t), introduces excessive oscillations in the numerical

resulss. For this reason a discontinuous time interpolation
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function, em(T] = constant, was used to appreximate p.
However higher order discontinuous em(t) should also be
considered in future research primarily to improve the

efficiency of the numerical analysis.

In the numerical applications carried out in
section 4.3, p is also discontinuous in space. Despite this
fact, continuous linear elements vielded geood numerical

results for all of the three problems studied.

The time integrations indicated in sxpressions
(4.2.5) and {(4.2.6} were performed analytically. The
integrands of the boundary integrals obtained with this
procedure (see expression 4.2.17) have singularities which
are of the same order as those which appear when considering
steady state potential problems. Consequently Gauss quadrature
could be applied to integrate numerically over all of the
elements except those with singularities., Singular boundary

integrals were carried out analytically.

Linear triangular cells were used to calculate
contributions due to initial conditions. In the semi-analytical
scheme discussed in section (4.2.2) a system of polar
coordinates (r,8) was employed and integrations with respect
to r were performed analytically. The expressions Obtained
were then integrated numerically with respect to § using
one-dimensicnal Gauss quadrature. This method of computing
initial conditions contributions, that appear in expression
{3.7.18), was tested in the examples discussed in sections

4.3.2 and 4.3.3 and proved to be very efficient,.
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A maximum of ten Gauss points was used to perform
both, cell and boundary integrations. The number of
Gauss points was gradually reduced as the time-stepping
scheme advanced in time, but no general rule was derived;
consequently further investigations on this subject are

required.

Three examples concerning two-dimensicnal problems
governed by the scalar wave eqguation were considered in
section 4.3. The first example (see section 4.3.1) tested
the performance of the propesed time-stepping scheme on a
problem in which p was discontinuous in both time and space.
The second example was studied in section 4.3.2 and was
concerned with checking the numerical performance of the
time-stepping technicgue described in this thesis when the
prescribed initial conditicons were not null. A further
illustration of the numerical technique under consideration
can ke found in secticn 4.3.3. In the example analysed there,
the time was divided into intervals that were shorter
than in the two previcus examples. This was because of the
rather complicated time and space behaviocur of p. In all of
these three applications the accuracy of the numerical

solutions was considered to be very good.

From the problems analysed in section 4.3 it can
also be concluded that very small values of the parameter
B, can in certain situations introduce an excessive level of
noise into the numerical results. Ancther important
conclusion that can bhe inferred from the applications is
that great care should be taken when choosing the time

intervals and boundary discretization, in order to avoid
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contradicting the causality property too far, that is,
in each time step waves should not be allowed to travel

between nodes far from each other.

A discussion concerning two- and three-dimensicnal
time-domain integral eguaticns for transient elastodynamics
was the object of chapter 5., The primary intention was to
describe the mathematical manipulations reguired to obtain
equation (5.4.1}) (see secticn 5.4), which can be used on the
two-dimensional numerical analysis. Initial conditions
were not considered in equation (5.4.1), however they can
be included by following a procedure similar to that presented

in section 3.7.

Linear discretization was used to approximate the
gecmetry of the I boundary and combination 3 displayed in
table 4.3.71 was adopted t0 interpolate boundary displacements

and tractions.

Ag in the case of the scalar wave equation, both time
inteqgrations and space integrations of singular expressions were
performed analytically. UNon-singular boundary integrals
were computed numerically employing a maximum of twenty

Gauss points.

The scheme implemented to compute internal stresses
was similar to the simplest procedure used in finite elements.
Triangular cells were used and stresses at their centroids
waere calculated from displacements which were linearly
interpolated inside each cell as a function of the

displacements at the cell nodes.
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Five numerical applications were considered in
section 6.3, where discussions concerning the choice of
boundary element meshes and time intervals were presented.
Results ¢btained with the time-domain boundary element
formulaticon were compared with those obtained using
boundary elements in conjunction with Laplace transform,

finite-differences and finite elements.

The agreement of the results was acceptable for
displacements and tracticons. The accuracy of the stress
numerical results was however dependent on a good selection
of cells. Large cells can lead to incorrect results mainly
on regions of stress concentration. Conversely excessively
small ¢ells should also be avoided because the displacemsnts
of these cell nodes can often be too close to each other
which may resulc in a large contribution to stresses due
tO numer ical errors. A more appropriate scheme in which
constant stress cells can still be employed is that in
which stresses, at any internal point, are cbtained as the
average value of stresses computed at varicus cells having
such a point as a common node. Higher order cells should
also be tested in future, however the most suitable alternative
method t¢ improve stress accuracy is to calculate them using

a proper integral egquation,

In a brief review it should be recognized that
the boundary integral technique presented in this report
showed to be very promising. Despite the poor interpclaticn
functions used in the numerical analyses ehcouraging results

were obtained.
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In order to improve the numerical technique
discuszed here higher order time and space interpclation
functions together with a more accurate scheme tc compute
stresses are recommended to ‘be implemented in future

research.

With reference to extending the present research
to a more diverse range of problems, initial conditions
and body forces can easily be introduced into the two-
dimensional elastodynamic formulation. Sub-regions must
alsc be implemented to introduce the possibility of analysing
non-homogeneous bodies. A vastly more efficient solution
of half-plane problems can be obtained using fundamental
solutions specifically derived for that case. Implementation
of such solutions must also be the object of future research

efforts.

The recommendations for future research mentioned
above only consider a few topics which can have immediate
applications to a diverse range of practical engineering
problems. However, there are many other possible extensions
which can be derived from this report and the case which
requires to be analysed first is a matter to be decided

according to the specific problem which needs to be solved.
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APPENDIX A

DIVERGENCE THEOREM AND INTEGRATION BY PARTS

In this appendix the operations reguired to
obtain equation (3.5.4) from equation (3.5.3) are outlined.
The two simple mathematical formulas given in (a) and

(b} below, will be required.

{a) Integration by parts
o} B b
f dg dx = {%%] - g af dx . (A. 1)
a a a

(b) Divergence theocorem

£. .40 = | f. n, 4T . (A.2)
343 373
Q T

Initially it is important tO recognize that

2 * AQ = . u*) L 4ag - LS I
JQV u u f2 } (u’J u ),j J (uu’j)‘J an
Q

+ J uufjj an . {A.3)

When the divergence theorem is applied ¢ the first twoe
terms on the right-hand side of equation (A.3), the following

relationship can be written
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Viou* @R = | wur,. A% + | u*u . n. al' = | wu*, n. 4l
: rJ] el 3 vJ ]
Q T r
= [ u92u* an + [ pu* ar - [ up* dr . (A.4)
9] JF T

The application of expressicon (A.1) to integrate
by parts with respect to time gives

+ +

t £
2 *
[ —g—{% u*dt = E—‘; u*] ~ l %‘% ?’;T ar . (A.5)
0 0

When expression [A.1) is applied again to the second term
on the right-hand side of expression (A.5), the following

expression results

£ t £ )
* *
I %ﬁu*df=[g_}§u*_3% u] +J u%—d‘r . (A.6)
0

Substitution of expressicns (A.4} and (A.6) into

equation (3.5.3) results in equation {(3.5.4}.

A final consideration concerning a change in
tractions and displacements notation must be discussed.
This notation is shown in equation (A.7) for the normal
derivative of u, and a similar procedure was adopted

for the potentials.
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[
] u*p 4T - } pu* Al + [ pu* 4T = j pu* 4l + pu* dar
T T T

2 2 1 ‘2
= J pu* drl . (A.7)
r

Therefore, in order to simplify the notation, p was replaced
by © over F2. It is important to realize however, that
integrations over the T2 part of the boundary refers to

prescribed normal derivatives of the potential.
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APPENDIX B

EVALUATION OF CONTRIBUTIONS DUE TO SINGULAR BOUNDARY INTEGRALS

This appendix is concerned with the evaluation of
the following limits (see expressions (3.5.18), (3.5.19)

and (3.5.20))

.y 1
Sp = iig T P(Q:tr)dl"E (B.1)
‘Tt
€
5, = lim anﬁb) ?% u(Q,t, ) dr_ (B.2)
e+0 JT
e
r 1 duf{Q,t)
— 71 ar u{Q,t
SV = lim Bn(Q) c_r T dFE (B.3}
e+0 ‘T =t
£ r

where Fe is the surface of the hemisphere shown in figure

3.5.3, r = [s-0| and ar_ = 4r_(o).

Expressicn (B.2), considered first, can be written

as

ar 1

S. = 1lim — —|u(Q,t - u(8,t)y (4r

Q e+0J an (Q) r%[(Q r) ( :I £
£

ex0 an (Q) r? €

+ u(S,t) lim { ar 1 ar . (B.4)
P_E

It will bhe assumed.that the potential satisfies

a Holder condition as a function of space about (S,t), i.e.

lu(@,t) = u(s,t) | < ar® , A>0, O<axi (B.5)

and a Holder condition as a function.oftine, i.e.
Juto,t-r/e) - u(Q,t)| < Br® , B0, 0<B<1. (B.6)

Conditions (B.5) and (B.6) are stronger than continuity, but
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woaker than differentiability {271}.

In view of expressions (B.5) and (B.6) it is
possible to have an expansion of u about (S,t) which takes

the form {84}
u(Q,t-r/c)y = u(s,t) + o(ra} + o(rB} . (B.7)

Consequently expression (B.4) can be written as

1 ar 1 o 8
Su = lim I 30(0) rz[}{r ) + o(r {]dre
e+0 r
£
+ u(S,t) lim or . 1 ar . (B.8)
e 0 . an(Q} r £

£

Then, evaluation of the limits shown in expression (B.8§)

reduces to considering

ar 1 -
3% (Q) rz_g dFE r E>0 . (B.9)

L = 1im
e+0

£
By employing the spherical coordinates (e,9,y) depicted in
figure (B.1}, and recognizing that 8r/3n(Q) = 1, expression

(B.9) reduces to

T/ 22%
L = lim J J —+— e2cosy 46 dy

e+0 0 o £ 5
0 £E>0
= lim (2me®) = (B.10)
e=>0
27 £=0

Therefore

5, = 2mu(s,t) . (B.11)
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If p and %% satisfy Holder conditions (or continuity)
in space and time, a procedure similar to the one just

described can be emploved to demonstrate that

s =5_=0 . (B.12)

Figure B.1 Spherical coordinates.

The method just outlined to isolate singular
contributions of boundary integrals is used in references
{20~22,36}. However ancther interesting procedure to study
the same problem has also been used {26,35,84} and will be

descr ibed next.

Let c(5,g) be a c¢ircular c¢ylinder of radius ¢
whose axis contains a boundary point S and with a generator
parallel to the normal to I at S {see figure B.2}. When
the I boundary satisfies the Liapunov {27} smoothness condition
at 5, and ¢ is sufficiently small, the intersection of

c(S,8) with I', denoted TE, can be considered to he a small
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disc of radius e, centred at S and tangent to I (see figure
B.2). In addition, a point s inside the domain fi, located

at a distance 8§ from S, such that &<<eg, should be considered.
Consequently, when neither source density nor initial

conditions are considered, equation (3.5.16) can be written

as
U-(S; ) 4.‘.]. i r p Qr r)
r-r
€
+-i[ or —1—u(Qt)+.~LM ar
a7 J an(Q) |re tr cr It
r-T - =t
£ r
1
+ '4—_” (Sp+Su+Sv) (B.13}
where r = |s-Q| and S,s S, and S can be obtained from

expressions {3.5.18), (3.5.19) and (3.5.20), changing S by s.
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’///C{S.e}

Figure B.2 Disc FE around the boundary point S.

When g-+0: I‘—I‘E+F, s+3 and

— 14 ax 1
Su = iig ’ ThiG) T2 u{Q,tr)dl“€ . (B.14)
r

€

If expression (B.7) is taken into account it is possible to

write,
£
s, = lim [ r—ag(o(rc‘) + o(rB)—‘ 2m0dp
g+0 - —

C

€

+ u{S,t) lim g% 21pdp . (B.15)
g+0 0
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Evaluation of the limits shown in expression (B.15) then

reduces to evaluating

L = 1lim
e+0

35_5 edp ' £>0 {B.16)

OI‘

Since pdp = rdr for a given §&<<g; it 1is possible to write

€
. § _ 1 .. 8 |©
L = lim T=F dr = =~ ToF 1lim =
£+0 r ge+0|r
g 8
0 when E&>0
= 1lim Tl“é' -1—‘5_5 = (B.17)
§=+0 )
(T when &E=0 ;
and so,
Su = 2mu(S,t) (B. 18}

as before.

Although either of the two alternatives described
can be used, the first one is preferred in this work because
it can easily be employed for boundaries of the Kellog type

as will be illustrated in the following paragraphs.

The next situation to be considered is that where
the domain © is cylindrical as shown in figure B.3 and the
boundary point S is located ¢n a edge, that is, the‘Liapunov
smoothness condition is not valid locally. The body must then
be considered as being augmented by a volume about S whose
boundary is formed by the intersection of a spherical
surf ace TE with two planes as shown in figure B.3. The
limit indicated in equation {(B.9) can conveniently be

written as
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L =L +L" (B.19)
with
L' = 1im | 2L 1 _ar (B.20)
an _2-f £ )
€+O T
te
. ar 1
LY = lim =— —~y—¢ 4l (B.21)
a0 Jr"an R°TE 3
€

il

where T' and I
£ £

It has already

L' =

are depicted in figure (B.4).

been shown that

[o £>0

[2n £=0 . (B.22)

L" can be obtained as outlined by the following operations

(see figure B.4)

where B is the

and

1

where o is the

T
lim { L felsindds

5 2-Z
ge=+0 y [
0 £>0
lim (2e98) = (B.23)
e+0
2B £=0

angle indicated in figure B.3. Consequently

2 (a+8)u(s,t) (B.24)

B 1%% u(s,t) = f% u{S,t) = c(S)u(s,t) (B.25)

internal angle depicted in figure B.3,

Finally it should be reccgnized that expression

(B.25) can be extended for the situation in which the three
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Figure B.3 Domain with a Kellog type bourndary augmented
by a sphere,

dAsp € sin©ad

m=3

Figure B.4 Surfaces Fé and P;.



dimensional domain is not cylindrical, therefcre c (S} can
be derivel for points located on corners following a

procedure similar tc the one described in this appendix.
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APPENDIX C

TWO-DIMENSIONAL FUNDAMENTAL SOLUTION TO THE

SCALAR WAVE EQUATION

It was shown in section 3.6 that the fundamental
sclution to the two-dimensiconal scalar wave equation can be

obtained from

+co
ugD = J ugD(q,t:s,T)dx3(q) {C.1)
-

or, in view of expressicn (3.4.6)

to s r—c(t—T}:
uk_ =c

50 = dzg(a@) . (C. 2]

Aocording to figure C.1 the following relationship can be

written
r? = Rr? + x32 (C.3)
where
2 _
R_ = (RiRi) (C.4)
and
Ri = xi(Q) - xi(S) r (1=1,2) . (C.5)

It should be recognized that s in this case is a point

belonging to the (x1,x2) pPlane.
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\.n

X3
Figure C.1 Illustration of the relationship given by
exXpression (C.3).

In view 0f expression (C.3), expressicn (C.2) can

be written as {9}

1
/2
4o
8§ (R¥+x2) - c{t~-T1)
[ [(r2exs 1IN

(R2+X§)lﬁ

u*

3 . (C.6)
-co
To perform the integration indicated in expression (C.6)

the following property of the Dirac delta function {98}

is required

6[?(x{} =
1

§(x=x )
= (C.7)

Il 613

1 |f'(xi]|
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which can be used whenever f'(x) = Q%%?L does not vanish
at the roots X, (i=1,2...n) of f(X). The two roocts of the

argument of th? Dirac delta in expression (C.6) are

+ E:Z (t-1) 2-—sz /? Thus

1 1 oz
| = = C{t—T}E‘:Z(t-—T)2—R2—‘ . {C.8)
[£rxy ] [E (x| —~ -
Therefore

l/ -
2
G[ER?+x§j - c(t-1)| =

—l

— =1 1
- 3 ..J

, lk‘
+ Glx3+[;é(t-T}?—R%] J . (C.9)

In view of expression (C.9) the integration indicated in
expression (C.6) can now be carried out, resulting in

(6,9}

x = 2¢ H[C (t-1)-R C.10
Y2p Vol (t-1) 2-RZ [( © ] ‘e )

It should be noted that when R is replaced by r, expression

{C.1Q) becomes expressiocn (3.6.9}.
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APPENDIX D

LINE INTEGRATIONS OVER THE CURVE DEFINED BY

THE ' BOUNDARY

In this appendix the following relationship which
was used previcusly in section 3.7

g

Z
EEe]roas = | £x) or(s,0)
9,

n o 9T () (D.1)

will be cobtained. From a comparison of expressions (D.1)
and (3.7.15) it is apparent that the notation has heen
changed, i.e. rr(B) has been replaced by r(8). It is
believed that this should not cause confusion, once it is
understood that r(8) is the distance between the origin of
the polar coordinate system shown in figure D.1 and a point

Q on the T boundary.

'\]l‘l

Figure D.1 Unit vectors, polar and line coordinates.
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The following expressions can now be written

8
2 . { 55
£ r(e)jr(e)de = | f(xr) r zp dar (D.2)
- ]
61 T
ar _
[ f{r) o 4ar = ] f{r) {(v.n) 4Tl (D.3)
r r
z
where v = ] is the unit vector parallel to the line that
r
joins the peoins s and Q in figure D.71. In view of expressions

(D.2) and {D.3), expression {D.1) is wvalid as long as it can

be proved that

_ a8

YV.R=Tap (D.4)
With reference to figure D.1

r = ri{cosfi + sinj) , (D.5)
hence

_ dr : , dr ., .
dr = [ag cos@ - r51n8]i + (55 sing® + rcose]l de
(D.6)

and

ar

3

-
Jig-d;_ =‘f[g—re—] w?as . (D.7)

Let t which is given as
£=ai+b] (D.8)
be a tangent vector to I at @, as shown in figure D.1.

Then the unit outward normal vector at Q can be written as

n=(bi-a j_)/v‘az+b2 . (D.9)
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t is given by

3T

- _ (or _ . ) AT ‘
t =5 = (55 cost - rsing)i + (53 siné + rcoss]y ,  (D.10)
then the expression for n reads
2
n = [?%g s5inf + rcoseli - [%% cosh - rsinB)%}/ [%%J 4r 2

Taking expressions (D.%) and (D.17) into consideration it

is fairly simple to demonstrate that

v.n-= : (D.12)

|

Z
V)
A comparison of expressions (D.7) and (D.12) demonstrates

that formula (D.4) is valid, consequently expression {(D.1}

is proved.
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APPENDIX E

ANALYTICAL TIME INTEGRATION

nm

This appendix presents expressions for (Di )

I’
Enm

i )F’ i gt { 1 )F and F?m that appear in eguations

(4.2.17) and (4.2.20)., Initially it is convenient to

define the following constants

=
Il

1 /c(tn-tm_1)-r

b
It

/C(tn—tm_1)+r

2
A3 = /c(tn-tm)—r 1)
A, = /o(E ~E )7%
A5 = /c(tn—tm+1)—r
As = /c(tn-tm+1)+r
(Y™ L, (DT, (E]M) [ and (E] )y which appear in

equaticon (4.2.17) can be calculated from (I), (II), {(III),

{IV} and (V) which follow,

(I) tm+1 < tn -rjc
2 -
(Dnm) = - E_ - iﬁ + 2 &t(tn tm—1)
i’z 32 A, A A, (A A, -AK])
2 -
(Dnm) = fﬁ - Ei + 2c &t(tn tm+1) (E.2)
i 'F B, A AQAG(A3A6§A4A§}
+ s
nm A3A4+C(tn-tm)
({01 = Bgbgmhqhymclt ¢ Db T o— 2Tt =t )
wi 2 n m-=1
A_A_+C(t_~t }
nm - _ - - _ 56 n_‘m+
(Ey g = [;SAS Bahy-c{t ~to )0 AL A, TC(E_~t ] J
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(II) tm+1 > tn - rj/c, tm < tn - r/c and.tm+1 < tn {r#0)
nm . . .
(Di )I + Use expression given in (I)
2
omy - tatfel
i’'F A4 r
(E.3)
nm - . . X T
(Ei - Use expression given in (I)
nm r
(E. Vp = AA, + c(t -t .}1n ( —
i'F 374 n m+1 _f3A4+c(tn tm)

(III) tm > tn - r/c and tm-? < tn - r/c (r can be equal to zero)

nm - 1
By )p = ~AqB, ¢
nm _
{Di )F =0
(E.4)
nm r
(E. ) = =A A ~c(t ~t__ 1In —
i I 172 n m-1 A1A2+c(tn tm-1)
nm _
(Ei )F =0
(Iv) t_ .4 > t, - r/c, and t_ ., =t
nm , . ,
(Di )I + Use expression given in (I}
A
nm _ 3
(Di )F = A4 (E.5)
nm . . ,
(Ei ]I + Use expression given in (I)
("™ = a_a

i 'F 3%4
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Vv -
(V) the1 >t T T/C
nm _ nm nm _ nm _
(DY = (DM = (E{ ) = (E{ Vg =0 (E.6)
F?m can be computed from (VI), (VII) and (VIII) below.

< -
(VI) tm tn r/c

A_A +c{t_-t )1

nm 34 n m
. = -cAt In — 1 (E.7)
i E&1A2+c(tn ey

(VII) tm >tn -r/c, tm_.| < tn -r/c

nm r
F" = -cAt In — (E.8)
i A1A2+c(tn tm—1)

(VIII) tm_1 > tn - r/c
i o= (E.9)
1

Each expression presented in this appendix must be
multiplied by a Heaviside function whose argument is equal
to the first argument of a square root to beccome negative

in the expression under consideration.
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APPENDIX F

INTRINSIC COORDINATES

lLet xi(S) represent the coordinates of the source
point S with regard to the systemof Cartesian cocrdinates
shown in figure F.1. The element ey shown in this figure

joints two nodes whose coordinates are given by

x.=1) = E‘1]

f:k = =1
20 [
2 2

Ek -

!
i
—

(F.1)
x1(1) x1

] 1

|
¥
N

x5 (1)

Xz‘

[X, (1), X0 1] \

~K

r\s-i“‘ Q I§KI

4 [X; =10 X t-11)

X

Figure F.37 Intrinsic and rectangular coordinates.
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E
"k

denoting the components of nk by (nk}i, the following

Considering that r = r(S,5 ) = |§-g(£k}| and

relationships can be written

1
- /2
r (riri}
ar _
an(ay (nk)l r,i (F.2)
lk
dfk = |J| dik = 5 dik (Summation convention not to be used

fcr the indice k).

In expression (F.2), J is the Jacobian of the coordinate

transformation, lk is the length of ey and

ry < Xi(Q)"Xi(S) = Xi(EkJ-Xi(S)
_ __or _/iji ¥
Fa T wm @ T7F ¥ (F.3)
_ - 1 = - -
Xj(E) = X(=1) 45 (18 [X; (N=xy (=]
In view of equaticns (F.2) and (F.3) the integrals in

eguations (4.2.22) and (4.2.23) can be easily calculated

using intrinsic coordinates Ek. When linear interpeclation
functions in time and space are adopted, the following

expressions can be written

1 el
nm, _ 1 3r . nm - or _nm -
L -1 =1 )
1 <1 .
nm _ 1 4r ,nm - gr ,..nm _
(Hij)F - 2cAt lp‘ Bn(Di )F(Ep+1)d€p lq 'an(Di )F(Eq 1idg
-1 -1




nm
(Gilg

exception of (Gr.ln
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i"l 1
— 1 i nm _ nm _
= 3CAT lpj (Ei }I(€p+1)d€p lq[ (Ei )Itgq 1)d5q
-1 -1
1 1
_ 1 nm - nm .
= SGAL lp (Ei )F(5p+7)d€p qu (E )F(Qq T)diq
-1 ~1
(F.4)

As previously stated in section 4.2, with the

nn nn
i,i-1)1r (G101 and (G 544y 2ll others

coefficients in expression (F.4) can be computed using

one~dimensional Gauss quadrature.

Analyti

the con

the term that have a logarithm singularity.

When n=m and i=j,

nn

; In this situation,
1l

is required to compute (G )I.

in expression (F.4) can be written as (see expression

—ALA e (t -t g0 E\1A2+c(tn-tn_1):[ -

- c(tn-tn_,l)hr]HlE:(tn—tn_1)—r] (F.5)

cal integraticn can now bhe carried out to calculate

nn

tributions te¢ (Gii)I' in expression (¥.4), of

The manipulatiocns

requirgd are described below.

{ 1

‘ 2cAt lp
4

hﬁp 1 = (1/2)
W i
J |
A oF
) |

| 1y

[ 2cAt
\ = (1/2)

rT -

1hl{r)(£ﬁﬁ1}H cht-r dgp =

‘ a
-1 - 2 -
‘ln(ap) 1 lp[ln{ap] ‘1/{“ r

(F'.56)

1111 {r) (£q~1)HE:at~—]dgq

a

In =1
‘ (aq}

a
"Tg{h’(aq)'wfé]}
q-—-
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where

{cﬁt when c&t<lp

B
1 otherwise
LB
(F.7)
fcat  when cot<l,
a —
]
1 otherwise
g
The procedure to be followed for the coefficients (G?“i_1)I
r

and (G2n1+1}1 is similar to the one just presented for
(ngijl: consequently it will not be described here.
r

It is important to recognize that although the

coefficients G?;

for linear and constant em are different
from each other, their singular term is the same. Thereicre
results similzar tc those defined by expreésion (F.68) can be

obtained in the case of constant time interpolaztion.
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APPENDIX G

TRANSVERSE MOTION OF A RECTANGULAR MEMBRANE

UNDER PRESCRIBED INITIAL VELOCITY

This appendix is c¢oncerned with obtaining
expressions to represent the transverse motion of the
rectangular membrane analysed in section 4.3.3. The
displacements are null ¢n the [ boundary and an initial
velocity Ve is prescribed over the rectangular area Ao
shown in figqure G.1. The analytical solution for this

specific problem was derived using the general expressions

given in reference {105},

T I PRI N NI NENER IR NEYNINNIVYY)

o
AL TALELEY LY e
Qo
435
- \\\\
1 §§
]
LT T I LTI TRIIy T

HEE AT T T T T T T T Ty oI O T T ryor™ —

| o
.

-

Figure G.1 Geometry, boundary and initial conditions for

the mewmbrane.

The transverse displacement u(xl,xz,t) at any
point inside the domair defined by the membrane and the

tractions p(a,xz,t; at any point ¢on the line X,=a can be
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calculated from

2v0 @ @ T TR
WX Xyrt) = —F z Z — sin }51n{ 5 ]Gmn (G.1)
m=1 n=1 mn
v ® o nx
Pla X, t) = aT? ) En\f cosmisin—= G (G.2)
m=1 n=1""mn
where
nﬂbz nnb, - mrna mwa,
G, = |cos —g==cos — J[COS - cos
. Sln(2ﬂvmnt) {(G.3)

and the natural freguencies v are given by

mn
_ Cafrmy ?, ny ?
Von o 'Z_J(E] + [5] . (G-4)

In the case of the membrane analysed in chapter 4,
{(a=h, a'=b'= %) the series of expressions (G.1} and (G.2)

were computed with eighty and one hundred terms respectively.
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APPENDIX H

FUNDAMENTAL TRACTION

The two-dimensional fundamental traction given by

expression (5.2.4) can als¢o be computed from

* =
Pk 2G(6n, € tn.e

el ) (H.1)

where Eijk is the fundamental strain, i.e.

= *
°1ix 2(“1k,3 uis, k! (H.2)

and 8 is the constant given by expression (5.2.9). In order

*
to work out an expression for eljk' uik,j must be computed
, " .
first, from ufy outlined by equation (5.2.6). uik,j can
conveniently be written as
c
u*, .= ! —3—[T +7.,-T, - —E{T -T_) {(H.3)
ik, 2mpe, X171 72 T3 ¢ 4 75 ‘
3 d
where
= L
T, 84y ZH[ t r'] (H.4)
T, = Eiﬁ L, ‘uie tr- H.5
s = =2 E fﬂ (H.3)
r o r oy -
= —f- _r | -
T, =7 LzN?{ESt {J (H.6)
§
- 1k -
T, = F1 L 'H 4t i] (H.7)
r itk
— r r -
Tg = —Z5— L1NTH[?dt %] . (H.B)

L1, NT' L2 and N2 in expressions {H.4)}) to (H.8) are given

by expression (5.4.3).

u* 5 can then easily be obtained oOnce expressions
f

for the derivatives @f T1, T2, T3, T4 and T5 with respect

o xj, have been calculated. The procedure to he followed
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will now be described: the following relationships will be

used
_ 1 -
r,mr,m = 1 {H.10)
gr
== r,ini (H.11)
njoij = ny (H.12)
Fr,et) = f () (H.13)
axj ! sjar ’ -
3 . - _ d - = - - -
-ﬁ_-.{[ct' r] = —-—-—B(CT)H c {t-1) r] Slct-(ct r)] .
(H.14)
To bhegin with the operations required to obtain
8T1 8T2 3T3
= ! 5% and e will be described in (a), (bland (c)
J ] j
be low.

(a) When expression (H.13) is employed the follewing

relationship can be written

3T, 3T, .
— = — = "
axj 5 5y I’rjfsik [r LiH[c t r] +

. (H.15)

g ’
+ Ly 5 H‘?:St rj

—

Taking account of 2xpression (H.14) it is possible to write

aT
1 3 d
— =71 .6, [rL Hfc t'-r| + L, ——— Hfc t'~r ] . {H.186)
axj J ik 2 [s :] 2 B(CST) LS j
{(b) When expressions (H.13) and {(H.1'4) are considered,

the following formula can be derived
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(H.17)

The third term on the right hand side of expression (H.17}

is null, and consequently

BT2 T ‘Gik
—_— = - L 1 -
=, ———l—r3 L2N2H|_T:2t r] . (H.18)

(c}) Considering expression (H.13), the following formula

can be written

aT r .r r .r Y
3 - a ;l :k fl ;k a |
= ° |7 (LN, + —ar(L2N2}JHESt £+
r .r
_.i Kk 2 .
YT T,y by Ny ap H[cst r:| . (H.19)

Using expressicn (H.9) the formula below can be darived

s (it Lk 1
! ] - e -
axj{ ) B L C T L PRI B (H.20)
The following expression can alsc be deduced
= (L,Ny) = r7L3 (H.21)
dr T 272 y) : .

Substituting expressions (H.20) and (H.21) intoc (H.19)

and using expression (H.14) then gives



214

BT3 1
— = {%7{6ijr,k+6kjr,i - 4r,ir,jr,k)L2N2 +

a’
]

4

3 | - T
r’ir'jr'erszE:St r:l + (H.22)
+ = r .r .r L.N., —o— H[C t'-T

r? 17,37 ,kT272 a(csr) [:s ]

'I‘4 and T5

expressions (H.18) and (H.22}. Then, ugk 3 can be
F

can now e obtained replacing g by Cq in

derived from expressions (H.3), (H.16), (H.18) and (H.22).

E3
4i5,%

k and j respectively, in the expression that yields ugk 4
1

can easily be obtained by interchanging 7 and k by

Having obtained u%, . and u¥*

x,5 T4,% expression (H.2) can then

be employed to work out Eijk' resulting in

. _ 1 3 . ° T
13k = 7w, | Fisk rLyE[c e or] + L, Te ¥ 08" r|] +
3.3 ' _
+ [E‘ijkLZNz + Gy Lz:]HEcst r] +
+ G L.,N 0 Hljec £'-r| - {H.23
i3x7272 TR _T) [s ] »23)
“sr ;
- —— LI
d{ Fisnla¥y * Gyt LﬂHI:cdt r:l +
+ G,.. L.N g H([e t'-r"l
13%7171 Tegm) [d J
where
Bigk = %, 57 %57k
F,.., = - Ji{ﬁ. r .+8 .r ,+6 r . -4r
ik r3' ik ,3 i37,k k7,1 ,iF,5F k) (H.24)
G =- 2y r

ijk rz T ,i,37,k '
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The fundamental traction p;k, as described by

{(5.28) can now be obtained by substituting

expression (H.23) into (H.1).
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APPENDIX T

STRESS AT BCUNDARY POINTS

No integral expression is derived in this thesis
to compute stresses. At internal points, cells are used to
obtain space derivatives of displacements which are
subseguently used to compute stresses. HQowever the same
procedure cannct be empleoyed for boundary points. In
this instance the procedure outlined in this section

must be applied,

From Hooke's law [equation (2.2.15)] the components
of the stress tensor, which refer the directicns s and n

shown in figure TI.1, are given by

USS - {A+2G) ESS+)\€nn
Opn = Mgt (A+26)e (I.1)
USH = UnS = ZGSSH
//’E
X, A

o

X

Figure I.1 System of coordinates and houndary points used

to compute the stress Tgg®
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If the expression {I.1} is employed, GSS can be computed

from
_ A+G A
Ocs = 36 153G fss T 753G “nn ’ (I.2)
Eguilibrium conditions give
a = p;n,; ' {I.3}

and therefore when Py and p, are known only €as remains
to be determined, in order to compute Ocg given by exXpression
(I.2). The displacement component in a direction parallel

to s is given by

Ug = Uy tu,n, (I.4)

consequently €,¢ Can be calculated from

€55 T TYq,sM2THo, 5™ ’ (I.3)
The following expression can now be used to obtain ;oo
r
at a node & of the I boundary (see figure I1.7)
u, (E+1,t)-u, (E-1,t)
u, o fp = > . (I.6)
i,8/8 |QUEFT) =Q(E-T) |

Expression (I.6) has already been used in {36,37,65,113}
and the accuracy for boundary stresses cbtained in those

references was considered satisfactory.
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Figure 6.3.28

Finite element mesh for the semi-infinite

pory FE awy BE RESVLTS

beam.
0 < 1 N
™~
My y
+5 ,/ \ E X TL“
cl|lo ! \ N 1
w (= i \
o z
\ \ AL
-5 a i '//
\5{ \ =y
\ ra
N \ /'% / —— BEAM THEORY
-0 U\ \ }.) 71 -— FEM
"\i Ly ® seM~ fr.5
s o1 |
0 | 2 3 4 X/r B

Figure 6.3.29

e 4T CORRECT:!!

THER RESUVLTS CoMKERNING
WERE

Uj
ELASTODYNAMICS
CMPROVED USING IMPROVED
VERSIONS OF THE ¢ODE
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APPENDIX E

ANALYTICAL TIME INTEGRATION

This appendix presents expressions for (ng)I,
nm nm nm nm . .
(Di )F’ (Ei )I’ (Ei )F and Fi that appear in eguations
{(4.2.17) and (4.2.20). Initially it is convenient to

define the following constants

A, = (c(tn—tm_q)—r

A, = /c(tn—tm_1)+r

Ay = /o(E -t j-F -
B, = V/o(t -t T

A5 = /C(tn—tm+1)-r

A, = /c(tn-tm+1)+r .

o™, o L, (E}"); and (E] ), which appear in

equation (4.2.17) can be calculated from (I), (II), (III),

(IVvy and (V) which follow,

(1) t_,, <t -r/c
2 -

oo - _{ﬁl ) Eﬁ . 2c* At () tm )

LD By By Ay (BB mAgRs)

2 -

(Dnm) = éﬁ - ig + ’ ﬂt(t tm+1) (E.2)

i'r TR TE . 6(A3A6*A4A§)

&5
A, (t =t )

(8™ = A,A,-A A,mc(t ~t _.)In

i’zI 3B ™A m=1 A1 ,te (€ -t )

A +c (b ~t_ ..
nm - - 576 n_ "m+1
(B ) p {%SAG Ajhymc{t =t )0 A3A4+c(tn~gn):
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Considering that r =x(S,§) = [5-0(§ )] and
denoting the components of o, by (nk)i' the following

relationships can be written

1
= /2
r (riri)
dr _
o) - i T (F.2)
lk
di = lJ\ dEk = ﬁ?-dgk {Summation conventicon not to be used

for the indice k).

In expression (F.2), J is the Jacobian of the coordinate

transformation, lk is the length of e and

ry = %, Q=% (8) = x,;(§,)-%,(5)
EhOw
. SN
SPE ST} ~ 77 F (F.3)

—_—

x; (Ey) = x (1) 45 (e [x (M =xy (1]

In view of eguations (F.2) and (F.3) the integrals in
equations (4.2.22) and (4.2.23) can be easily calculated
using intrinsic coordinates Ek. When linear interpolation
functicons in time and space are adopted, the following

expressions can be written

.‘l -1

nm - _ ar .nm _ 9r , nm i

(Hij)1 = 28t |lp 1an(Di ) p(Epthag -1l SEOTM (g mag,
I ).

e -
nm - 1 ar , _nm - 3r ,.nm _

ii'r T 3eae|tp| an Py dplEptNAs,ml | SR (D ) plEgmIAE
L ._‘l ""1

(H
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1 1
nm _ nm _ nm _
(G391 = Jemt 1PJ (8] 1 (B rNdE 1q[ (B3 1) (g mNdE,
-1 -1

.

1 1
nm _ 1 nm _ nm _
(Gij)F = SGAT lpJ (Ey )F(Epﬂ)dﬁp qu (B )F(Eq 1)d€q
-1 adl

(F.4)

As previously stated in section 4.2, with the

exception of (Gl 35— 1)1, (Gl i I and (Gl 1+1)I’ a2ll others

coefficients in expression (F.4} can be computed using

one-dimensional Gauss gquadrature. When n=m and i=j,
nn

(Ei )I is required t¢ compute (Gll)I In this situation,
(E?m)I in expression (F.4) can be written as (see expression
E.4})

(EEH)I = | TAgApteE ) P*1A2+C (tn”tn—'i)] -

- c(tn-tn__,l)]nr]H c(tn-tn_,l)—r] . (F.5)

Analytical integration can now be carried ocut to calculate

nn

the contributions to (Gii)I’ in expressicn (¥.4), of

the term that have a logarithm singularity. The manipulations

required are described below.

el
1

omE lp| B ) (EPDE[Est-rdg, =

1-1

a
= 1 - — .._E, _
(1/2) |1 a ) =1 lp[%a(ap) ZI

p (F.6)

SoAT 1q In (r) (gq—anat—-]dgq =

)

= - _q -
(1/2) \]n(aq) 1 Pn(a) 1/2]]
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