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CHAPTER 7 

INTRODUCTION 


1.1 P r e l i m i n a r y  Remarks 

The discovery by F r e s n e l  ( 1 8 1 6 )  and Young ( 7 8 1 7 )  

concern ing  the  p r o p e r t i e s  o£ l i g h t  s t i m u l a t e d  scientists t o  

study t h e  r ather complicated phenomena of t h e  propagation o£ 

waves in elastic bodies.  The conceptual  problem of 

i n t e r p r e t i n g  the p h y s i c a l  f ea tures  o£ waves i n  e l a s t i c  bodies 

was as d i f f i c u l t  as the mathenatical f o r m u l a t i o n .  A p p a r e n t l y  

Po i s son  ( 1 )  was the f i r s t  t o  recognize t h a t  an e l a s t i c  

d i s tu rbance  i s  in gene ra l  composed o£ the dilational 

(irrotational, l ong i tud ina l ,  pr imary) and equ ivo lumina l  

(shear, transverse , d i s t o r t i o n a l , secondary) waves. N e a r l y  

sixty years elapsed before Lord Rayleigh ( 2 )  discovered the  

now w e l l  known surface waves (Rayle igh  waves) . Such waves 

are conf i n e d  t o  t h e  r e g i o n  close t o  t h e  s u r f ace of t h e  hal f  -
space and propagate with a speed which is less t h a n  t h a t  of 

the e q u i v o l u m i n a l  body wave. S u r f a c e  waves were also s t u d i e d  

by Lamb ( 3 ) and Love { 4 , 5  ) who contr ibuted cons iderably  to 

t h e  unders tand ing  of t h e  sub jec t .  A complete h i s t o r  i c a l  

review of the e a r l y  i n v e s t i g a t i o n s  carried o u t  by Poisson, 

Cauchy, Ost rogradsky ,  Green ,  L a m é ,  Stokes, C l e b s h  and 

C h r i s t o f f e l ,  together w i t h  works published l a te r  on 

s u r f ace waves can be found in t h e  book by Love 15) .  

Due to i t s  inumerable  applications the theory o£ 

wave propagation h a s  k e n  s t u d i e d  by an i n c r e a s i n g  number 

o£ researchers, b u t  d e s p i t e  the progress  achieved in recent 

years  quite a l o t  more investigations are requi red .  There 
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are  now many books on wave propaçat ion and a modern approach 

to t h e  subjec t  c a n  be found in references {6,7,8,9,10]. 

The need t o  f i n d  s o l u t i o n s  to e n g i n e e r i n g  problems 

invo lv ing  non-homogeneous, non-isotropic solids w i t h  complex 

geometries and sometimes having non-l inear  behaviour stimulated 

t h e  development of n u m e r i c a l  t e chn iques ;  f i n i t e  d i f f e rences  

b e i n g  the  f i r s t  one t o  bs commonly adopted by e n g i n e e r s .  A 

review of i t s  a p p l i c a t i o n s  t o  wave propaqation can be found 

in referente { I l } .  

P r e s e n t l y  the finite element method (12 -161  is by 

f a r  the most popular  numerical t echn ique .  It is undoubtedly 

more e f f i c i e n t  t h a n  the f inite di££erence technique in most 

e n g i n e e r i n g  applications. Since  t h e  s i x t i e s  the f i n i t e  

e lement  method has been used to so lve  elastodynarnic problems 

I121 and due to the large number of researchers working in 

t h e  f i e l d ,  as soon as the year of 1974 g e n e r a l  computer 

prograrns of the type described in references (17-19)  &carne 

avai lable .  One of the drawbacks o£ f i n i t e  e l e m e n t s  and 

f i n i t e  d i f f erence s when used to solve wave propayation problems 

i s  the need t o  terminate t h e  mesh when the domain k i n g  

analysed is not bounded. I n  t h i s  s i t u a t i o n  artificial 

boundaries ref lec t  unwanted waves that c a n  i n t e r f e r e  and 

sometimes cornpletely i n v a l i d a t e  the r e s u l t s .  In order to 

avoid t h i s  problem researchers developed t r a n s m i t t i n g  

( n o n - r e f l e c t i n g )  boundaries; t he i r  appl ica t ion  can increase 

the c o s t  o£ the ana lys i s .  Besides ,  the number o£ f i n i t e  

e lements  requi red  can  s t i l l  be largc ,  as such boundaries 

a r e  u s u a l l y  capable of t s a n s m i t t i n q  p l ane  or c y l i n d r i c a l  waves 

o n l y  {11),  and therefore  they must be placed f a r  from the 
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i n i t - i a l l y  d i s tu rbed  r -egion.  Consequent ly  a method such as 

the boundary e lement  method 120-22)  that pcrforms w e l l  f o r  

both bounded and unbounãed domains and does n o t  n e c e s s x i l y  

require domain d i s c r e t i z a t i o n  can be an advantage in many 

prac t i c a l  app l i ca t ions  . 
A g r e a t  deal  o£ the work carr ied o u t  u s i n g  i n t e g r a l  

r ep resen ta t ions  is concerned with the use of this useful 

mathernatical too1 to prove uniqueness and existence of 

s o l u t i o n s  o£ d i f f  e ren t i a l  equa t ions  {6,8,9,23,24 ). Its 

use to obta in  s o l u t i o n s  of problems was restr icted to some 

simple applications, sometimes numer i c a l  {7,25 ); but no 

g e n e r a l  algorithm o£ s o l u t i o n  was der ived until researchers  

started developing boundary e l e m e n t  methods. Boundar y 

i n t e g r a l  equa t ion  method { 2 6 , 2 7 )  is also a common equ iva l en t  

name found in t h e  l i t e ra tu re .  These methods are ca l l ed  

direct when phys i ca l  pa ramete r s  such  as displacements  and 

t r ac t ions  i n  elasticity, are d i r e ç t l y  obtained from t h e  

solution of an i n t e g r a l  equa t ion  {20-22,  28-37)  and i n d i r e c t  

i f  this is not t k e  case { 2 7 , 3 8 , 3 9 ) .  References to most of 

the  i n v e s t i g a t i o n s  casried out so far on boundary  e l e m e n t s  

can be found in many textbooks t h a t  have now been  published 

on t h e  s u b j e c t  120-22, 27, 4 0 - 4 9 ) .  

D i f f e r e n t  procedures have been adopted to fo rmula te  

the  boundary element method.; a11 of them dependent on t h e  

p rev ious  knowleüge  of a s i n g u l a r  solution ( fundamenta l  

solution). In çonsidering t h e  e l a s t i c i t y  case,  Rizzo 1 2 8 )  

and l a t e r  on C r u s e  (29 ,301 employed Betti's reciproca1 

t h e o r e m  I 5 1 1  and the fundamenta l  solution developed by 

Lord.K e l v i n  I521  to o b t a i n  Somigliana's i d e n t i t y  ( 5 3 ) .  
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Through a lirniting process an i n t e g r a l  e q u a t i o n  r e l a t i n g  

boundary displacements and tract ions  was subsequen t ly 

obtained and transformed i n t o  an algebraic  s y s t e m  of 

equat i o n s  by using interpolation f unct ions . An alternat i v e  

approach wh ich  leads t o  t h e  sarne equations obtained by Rizzo 

is the one used by Brebbia ( 20 )  who Eormulates the problem 

through weighted residual considerations. One of the main 

advantages o£ t h i s  approach is to make it easier to relate 

and combine the boundary e l e m e n t  method w i t h  other n u m e r i c a l  

t echn iques .  Alternative  fundamenta l  solutions t h a t  

s a t i s f y  c e r t a i n  boundary c o n d i t i o n s  have also been used 

( 3 4 , 3 6 , 5 4  ) and can be of great advantage i n  many app l i ca t ions .  

The purpose o£ this work is to solve t r a n s i e n t  

two-dimensional e lastodynamic and scalw wave e q u a t i o n  

problems using the boundary element method. The fundamenta l  

s o l u t i o n s  adopted here are time-dependent . The i n t e g r a l  

e q u a t i o n s  obta ined are solved numer i c a l l y  u s i n g  a time-

stepping scheme. 

Two- and three-dimensional i n t e g r a l  r e p r e s e n t a t i o n s  

fo r  the two previously s t a t e d  problems can  be found in many 

works {6,8,9,55); but need t o  undergo £ u r t h e r  t r a n s f o r r n a t i o n s  

i n  order t o  be used as a basis  fo r  numerical a n a l y s i s .  T h i s  

f a c t  becomes ev iden t  in that the i n t e g r a l  r e p r e s e n t a t i o n  f o r  

the scalar wave equation in three dimensions involves Dirac 

d e l t a  f u n c t i o n s  which must be eliminated before a numerical 

scheme of s o l u t i o n  can  be implemented. T h i s  t r a n ç f ormation 

w a s  prinarily conpleted by Kirchhoff I571 who obtained an 

express ion  from which t h e  potential a t  i n t e r n a 1  points can 

k computed. Later on, integral equations relating only 

4



boundary unknowns were der ived  and success fú l ly  used t o  

obta in  boundary e l e m e n t  solutions {58-60 1 .  

Most of t h e  research carried o u t  so f a r  on boundary 

e lements  has been cone-ned w i t h  s o l u t i o n s  of e l l i p t i c  and 

parabolic type differential equations. Q u i t e  a l o t  of 

i n v e s t i q a t i o n s  have a l r e a d y  been carried out showing t h a t  

the boundary element method is a n  e£f i c i e n t  t e c h n i q u e  f o r  

these types o£ problem. However the same amount of e f f  ort 

has not been directed towards  solving hyperbolic d i f f e r e n t i a l  

e q u a t i o n s .  Theref o re ,  t h i s  a developinq research area n i t h  

a great deal to bs accomplished in both the a n a l y t i c a l  

formulation and implementation o£ general n u m e r i c a l  procedures. 

7.2 L i t e r a t u r e  Survey - T r a n s i e n t  Applications 

Cruse i6l)and C r u s e  and Rizzo ( 6 2  and 6 3 )  w e r e  t h e  

first researchers in t he  f i e l d  of boundary elements to 

implement a general  numer ica l  procedure to solve two-

dimens iona l  elastodynamic tr a n s i e n t  problems . In their 

approach, boundary e lements  are used to so lve  e l l i p t i c  

d i f f e r e n t i a l  e q u a t i o n s  in the Laplace t r ans fo rm domain and 

a n u m e r i c a l  a lgor i thm due to Papoulis ( 6 4 )  is used to 

obt a i n  t i m e  domain solutions. T h e  two numer ical applications 

carried out  by Cruse and Rizzo were concesned with half-plane 

psoblems and showed t h a t  t h e i r  apgroach q ives  very accurate 

r e s u l t s  for e a r l y  times. 

A s  an extension of Cruse's work, Manolis  { 6 5 )  

and la ter  Manol i s  and R e ç k o s  { 6 6 }  compared P a p o u l i s '  and Durbinls 

{ 6 7 )  algorithms to o b t a i n  t i m e  domain s o l u t i o n s .  These  

researcher s s t u d i e d  stress concentrat i o n  in undergr ound 
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s t ructures and Zound that Durbin ' s algor ithm, 

a l t hough  more t i m e  consuming than P a p o u l i s ' ,  had a high  

accuracy even f o r  late times. They carried o u t  a f i n i t e  

e l e m e n t  analysis as w e l l  and concluded that due  to t h e  low 

accuracy o£ some of the r e s u l t s  finite e l e m e n t s  were n o t  

e f f i c i e n t  fo r  t h i s  t y p e  of problem. 

Manolis 165 )  also formulated t h e  steady s t a t e  

elastodynamic problem and pointed out that the i n t e g r a l  

equa t i ons  fo r  t h i s  case can be obtained from those  employed 

by C r u s e ,  by r e p l a c i n g  the Laplace parameter ' s '  by ' iw' 

where lu '  is the e x c i t i n g  f r e q u e n c y .  Alarcon et al. { 6 8 )  

used the same idea subsequently to f ind the dynamic s t i f f n e s s  

o£ f o u n d a t i o n s .  

Direct s o l u t i o n  o£ hyperbolic d i f f e r e n t i a l  e q u a t i o n s  

u s i n g  time-stepping techniques w a s  first carried o u t  by 

Frledman and Shaw { 5 8 )  and later on by Shaw et al. (69-761.  

The initial i n v e s t i g a t i o n s  carr ied  o u t  by these 

a u t h o r s  apgear to have marked. the s h i f t  to computer solutions 

of wave propagation problems u s i n g  i n t e g r a l  e q u a t i o n s .  Their 

boundary e q u a t i o n s  are bas ica l ly  m o d i f  i c a t i o n s  of Kirchhof f ' s 

i n t e g r a l  r e p r e s e n t a t i o n ,  which is t aken  to the boundary o£ 

the domain u s i n g  standard r e s u l t s  o£ p o t e n t i a l  theory [ 7 7 3 ,  

and then ad apted to the problems they wanted to solve. However , 

t h e i r  a p p l i c a t i o n s  were mainly concerned with p a r t i c u l a r  

geometr ies  and boundary cond i t ions and no general numer i c a l  

formulation w a s  attempted. They solved two-dimensional problems 

by c o n s i d e r i n g  them as three-dimensional  c y l i n d r i ca l  ones 

with a rb i tmary  axes length. In t h i s  way the three-dimensional 

f -o rmula t ion  can be used,  with the artif ic i a l l y  in t roduced  

6



t h i r d .  s p a t i a l  coordina te  playinq the r o l e  of a t i m e  l i k e  

var iable .  With t h i s  procedure the t i m e  i n t e q r a t i o n  w h i c h  is 

required in two-dimensional f ormulations is avoided at the 

expense of i n t roduc ing  an additional s p a t i a l  dimension. 

Further investigations re la ted  to  Kirchhoff ' s 

i n t e g r a l  e q u a t i o n  were carisied o u t  by Mitzener  { 5 9 ) .  He 

presented a general  numerical procedure to analyse  t r a n s i e n t  

s ca t t e r i ng  from a hard surface b u t  o n l y  considered in his 

formulation particular boundary c o n d i t i o n s  related t o  the 

problem he s t u d i e d .  

Recently Groenenboon {60) u s i n g  an approach s i m i l a r  

t o  M i t z e n e r l s  presented a g e n e r a l  boundary e l e m e n t  retarded 

potential t echn ique  to solve u n s t e a d y  potential f l u i d  flow 

problems i n  three dimensions.  H e  applied t h e  boundary 

element method to s t u d y  the flow of liquid sodium in cooling 

components o£ l i q u i d  m e t a l  fas t  breeder reactors .  R a d i a t i o n  

c o n d i t i o n  w a s  i n t r o d u c e d  to simulate openings that give  an 

ent rance  to other  p a r t s  of the steam generators and 

i n t e r c o n n e c t i n g  p ip ing  system. A concentra ted source t e r m  

was inc luded in tke fo rmula t ion  to simulate the expanding 

react ion bubble o r i g i n a t i n g  from t h e  soãiwn-water reac t i o n .  

The n u m e r i c a l  a p p l i c a t i o n s  whlch he carried o u t  produced 

encouraging r e s u l t s .  

Further c o n t r i b u t i o n s  t o  t h e  subject  w e r e  g iven by 

N e i l s o n  et al. ( 7 8 )  and Herman i 7 9 ) .  The Eormer extended Shawls 

formulation t o  a wider range  of problems and t h e  l a t t e r  

presented an  i t e r a c t i v e  method which eliminated s p u r i o u s  

o s c i l l a t i o n s  t h a t  can appear at late stages in a t i m e -

stepping analysls. 
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Three-d imens ional  fundamenta l  s o l u t i o n s  were also 

used by N i w a  et al. {&O) and Manolis 181). These a u t h o r s  

analysed two-dimensional transient elastodynamic problems 

u s i n g  a scheme i d e n t i c a l  t o  Shaw's ,  i.@., t h e y  considered 

two-dimensional  bodies as cy l inders  w i t h  axes of a r b i t r a r y  

l e n g t h .  

So far,  very Eew numerical  schemes have been 

implemented t o  solve wave  p ropaga t i on  problems u s i n g  two-

dimensional t i m e  dependent fundamental  s o l u t i o n s .  Das ( 8 2 )  

and Das and Aki 183) s tud ied .  the propagat ion of a two-dimensional 

shear crack in an i n f i n i t e  homogeneous elastic medium u s i n q  

a time-stepping approach. However , t h e i r  f ormulat ion w a s  not 

a genera l  one. 

Cole e t  al. 184 } appl ied the well known two-

dimensional  t i m e  domain integral e q u a t i o n  for tke scalar wave 

equa t ion  1 6 1  to solve t r a n s i e n t  e l a s t o d y n a m i c  a n t i p l a n e  

motions. I n  that work a time-stepping scheme w a s  used to 

o b t a i n  numer i c a l  s o l u t i o n s  for the problem of t w o  welded h a l f -

planes e x c i t e d  by a concentrated source .  Very accurate 

displacements  at the common surface were obtained. T h e i r  

f o r m u l a t i o n  was however restricted to problems in w h i c h  the 

boundary i n t e g r a l  involving the p o t e n t i a l  (displacement) 

d i sappea r s ,  w h i c h  implies t h a t  i n t e r n a 1  displacements  c o u l d  

not be computed w i t h  the i r  procedure. I n  s p i t e  of t h i s  the i r  

paper represents the f i r s t  c o n t r i b u t i o n  towards f i n d i n g  a 

genera l  formulation u s i n g  a two-dimensional t ime-dependent  

fundamental s o l u t i o n .  
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Mançur and Brebbia 185 ,861  have also agplied t h e  

boundary e l e m e n t  method to a n a l y s e  t r a n s i e n t  problems 

governed by the two-dimensional scalar  wave cqua t i on .  

Comrnencing w i t h  weighted r e s i dua l  considerations they 

initially der ived  the same i n t e g r a l  e q u a t i o n  obtained by 

Morse and Feshbach ( 6 1  using Green's theorem. F u r t h e r  

transformations were t h e n  c arr ied o u t  to o1 im ina t e  

de r iva t i ve s  of Heaviside Eunc t ions  t h a t  appeared in the 

integral e q u a t i o n  anã a g e n e r a l  approach amenable to 

numer i c a l  solutions was der ived . Contr ibutions due t o  

i n i t i a l  c o n d i t i o n s  and source t e r m s  w e r e  also i n c l u d e d .  A 

time-stepping scheme similar t o  t h a t  proposed by Cole 

et al. w a s  used to ob ta in  t i m e  d.omain so lu t ions .  The numerica l  

features  of this approach were illustrated by t h r e e  example s 

fior a l l  of which  h i g h l y  accurate results were obtained. 

1.3 C o n t e n t s  o£ the Present  Work 

In Chapter 2 a short review of the basic theory  

of elastodynamics is presented, b u t  t hose  not f a m i l i a r  with 

t h i s  t o p i c  may f i nd  it necessary  t o  read f u r t h e r  on the su,bjcct  

before c o n t i n u i n g  with subsequent  chapters .  I£ t h i s  is the 

case s u i t a b l e  ex.planation c a n  be obtained from c o n s u l t i n q  

any of the selected referentes on e las todynamics  p rev ious ly  

mentioned in t h i s  sect ion,  The objective of chapter t w o  i s  

to i n t r o d u c e  some simple but useful concepts as w e l l  as to 

describe s i rnul taneously  some of the n o t a t i o n  and terminology 

used i n  t h i s  thesis. 

I n i t i a l l y  a r e v i e w  of the small s t r a i n  theory of 

e l a s tos ta t i c s  is car r ied  out. The main topics  presented in 

t h i s  pre l iminar-y  d iscuss ion  are concerned w i t h  s t ress 
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equilibrium equa t ions  of motion, ç t r -a in  displacement 

relationships, d e f i n i t i o n  o£ r o t a t i o n  and Hookesl law f o r  

homogeneous i so t rop i c  e las t ic  bodies. Following t h i s  some 

basic concepts o£ elastodynamics are introduced. T h i s  is  

carried out by desc r ib ing  the boundary initial value problern of 

elastodynarnics,  c o n d i t i o n s  at wave f r o n t s  and equivoluminal 

and d i l a t a t i o n a l  body waves. L& potentials, r e g u l a r i t y  

and r a d i a t i o n c o n d i t i o n s  f o r  i n f i n i t e  bodies are then analysed.  

In order to c l a r i f y  f u r t h e r  concepts a d i s c u s s i o n  on one 

dimensional, p lane ,  spherical  and c y l i n d r i c a l  waves fo l lows .  

The l a s t  p a r t  o£ chapter  2 concen t ra t e s  on plane rnotions, 

i.e., a n t i p l a n e ,  plane s t r a i n  and plane s tress motions. 

Chapter 3 is concerned w i t h  t i m e  domain i n t e g r a l  

representations related to the sc alar wave equat ion.  The 

discussion carried out  within t h a t  chapter uses many 

propert ies of the Dirac d e l t a  and Heaviside func t io r i s .  For 

t h i s  reason after an i n i t i a l  d e s c r i p t i o n  of the boundary 

i n i t i a l  v a l u e  problem, definition and some properties of these  

s p e c i a l  f u n c t i o n s  are presented. Next the Green's f u n c t i o n  

f o r  three dimensions , together w i t h  a weighted residual 

s t a t e m e n t  are used to r i b t a i n  an i n t e g r a l  r e p r e s e n t a t i o n  £or 

t h e  problem. F u r t h e r  operations to e l i m i n a t e  de r i va t i ve s  

o£ t h e  Dirac d e l t a  f u n c t i o n  are then performed leading to 

the Kirchhof f i n t eg ra l  r e p r e s e n t a t i a n .  

The two-dimensional i n t e g r a l  r e p r e s e n t , h t i o n  due  to 

Volterra  is next  obtained u s i n g  the method of descent .  

Volterra's fo rmula  is t h e n  modified f o l lowing t h e  procedure 

described in referentes 185 and 86). An i n t e g r a l  e q u a t i o n  

is obtained suitable f o r  applying i n  a g e n e r a l  numerical  

analysis. 
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Chapter  4. presents a d i scuss ion  on the numer ica l  

implementat ion o£ the two-dimensional i n t e g r a l  e q u a t i o n  

obtained in the previous  chapter .  The i n t e r p o l a t i o n  f u n c t i o n s  

used to approximate boundary displacements and t h e i r  normal 

d e r i v a t i v e s ,  together w i t h  the procedure used to perform the 

boundary i n t e g r a t i o n s  are the topics initially discussed. 

~ e x t, domain i n t e g r a t ions are considered, and t h c  chapter  

c o n c l u d e s  with an i n v e s t i g a t i o n  o£ t h r e e  i l l u s t r a t i v e  

numer ica l  examples . 
In Chapter 5 the discussion presented in Chapter 3 

concern ing  the scalar wave equation is  extended to 

elastodynamics. The c h a p t e r  opens with a surnmarized 

descr i p t i o n  of the boundary i n i t i a l  value  pr oblem of 

e las todynamics  . T h i s  is followed by t w o - and  three-dimensional 

fundamenta l  solutions being employed t o g e t h e r  with t h e  

rec iproca1 theorem of elastodynamics to work o u t  the integra1 

represen ta t ions  for the problem. 

The laçt part of Chap te r  f i v e  is  concerned w i t h  

add itional transformat i o n s  which must be c arr ied o u t  in 

order  to obtain a two-d imens iona l  boundary i n t e g r a l  e q u a t i o n  

for elastodynanics, s u i t a b l e  to be used in a general numerical 

time-steppinq analysis. 

Chapter 6 is concerned w i t h  t h e  numer ica l  

implementation of a t ime-s tepping scheme to solve t h e  two-

dimensional boundary integral equation ob ta ined  in Chapter 5 .  

The numer ica1 procedure used t o  solve e lastodynamic problems 

with boundary elemenfs is s imi la r  t o  t h e  one described in 

Chapter  4 .  For t h i s  reason t h e  initial discussion presented 

in Chapter 6- referr ing to i n t e r p o l a t i o n  f u n c t i o n s  and to t h e  
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implementa t ion  of t h e  t ime-s t epp inq  t echn ique  is o n l y  cursory.  

Next the n u m e r i c a l  scheme used to compute stresses at 

interna1 points is presented., the chapter ending w i t h  a 

study of f i v e  i l l u s t r a t i v e  ex-amples. 

Chapter 7 presents a g e n e r a l  d i s c u s s i o n  of the 

matters i n v e s t i g a t e d  in t h e  p rev ious  c h a p t w s  with 

c o n c l u s i o n s  developed from the present work and recommendations 

f o r  f uture research. 
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CHAPTER 2 

LINEAR ELASTODYNAMICS 

2 . 1  	 Introduction 

T h i s  chapter i s  concerned with a shor t  d e s c r i p t i o n  

of the l i n e a r  elastodynamic problem. The i n t e n t i o n  here is 

to provide an account o£ the basic theory and concepts 

employed i n  subsequent chapters. A more comprehensive 

i n v e s t i g a t i o n  can be found in any o£ the many standard 

textbooks ci ted on the subject {5,7-10,87). 

Because of the complex n a t u r e  o£ the Navier's 

equ i l ib r iu rn  e q u a t i o n s ,  a l t e rna t i ve  d i f f e r e n t i a l  operators  

have been used to represent motions of i s o t r o p i c  e l a s t i c  

bodies .  A very convenien t  approach is t h a t  w h i c h  adopts L m &  

potentials, in which the displacement components are 

expressed in terms o£ der iva t fves  o£ potentials t h a t  s a t i s f y  

wave equations. The comprehensive information ava i lab le  on 

the wave equa f ion ,  in c o n j u n c t i o n  w i t h  i t s  simplicity c a n  be 

of great advantage in quite  a number of a p p l i c a t i o n s .  

However , par t i c u l a r l y  in n u m e r i c a l  a n a l y s is , the adopt i o n  

o£ Navier's equa t ions  o£ rnotion is preferred. One of t h e  

a rgumen t s  for  t h i s  is that it is poss ib l e  to work d i r e c t l y  

w i t h  var iables  o£ phys ica l  i n t e res t  rather than  w i t h  

e l a s t i c  potentials. 

In sec t i o n  2.2 t h e  a£orementioned approaches and 

also other basic topics  are considered. 

TAe  following sect ion fs concerned with one-

dimensional motions and plane, c y l i n d r i c a l  and spher i ca l  

waves. The object ive  of this investigation is to i n t roduce  
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more of the descript ive te rminoloqy used as well as to 

clar i£y some concepks. 

The chapter conc ludes  with a s e c t i o n  concer ned 

with plane motions. 

Basic Theory 

Throughout t h i s  work the Cartesian t enso r  n o t a t i o n  

is used.  T h l s  no ta t ion  pe rmi t s  expressions t o  be w r i t t e n  i n  

a compact form and it is very useful when cons ider ing  

equat i o n s  re la ted  to mathematical phys ics . Such no ta t i o n  

makes use of s u b s c r i p t  indices  (1 ,2,3)  to represent ( x , y , z )  . 
In t h i s  work t k e  surnmation convention w i l l  be employed, i . e . ,  

a repeated index ( s u b s c r i p t  or s u p e r s c r i p t )  in a t e r m  

implies surnmation with respect to that index over i t s  range. 

Hence in three dirnensions, 

In add i t ion ,  the Kronecker d e l t a  çymbol 6 i j  and 

the  permutation symboi e i jk ,  as defined by express ion 

( 2 . 2 . 2 ) ,  wi11 be used. 

(1 when i = j 

6 i j  = (O when i f j 

'O when any t w o  i n d i c e s  are e q u a l ,  

1 when i ,j ,k are an even p e r m u t a t i o n  

-e i j k  - of 1,2,3, 

-1 when i,j ,k are an odd permut at i o n  

Another useful convention refers to part ia1 

d i f  f e r e n t i a t i o n  of f u n c t i o n s .  T h e  fol lowing rep resen ta t ion  

is used,  
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With in  this work u n l e s s  otherwise stated i n d i c e s  

are assumed to have respec t ive ly  a range of three o r  t w o  

f o r  three- or two-dimensional a n a l y s i s .  

Consider an infinitesimal paralfelepiped s u r r o u n d i n g  

a p o i n t  w i t h i n  a body. I£ one isolates such  a p a r a l l e l e p i p e d  

t h e  remainder of the body can be replaced by t h e  components 

o£ t h e  stress tensor o i j  (force per  unit area)  as depicted 

in f i g u r e  2.2.1.  The s i g n  convent ion for  stresses iç ~ u c h  

that i£ o i j  is positive the vector r e p r e s e n t i n g  a i j  (s tress 

vector)  points  in the p o s i t i v e  or negative x -d i rec t ion  
j 

if t h e  outer  normal to the s u face element under consider at i o n  

p o i n t s  r e s p e c t i v e l y  in t h e  pos i t ive  or negat ive xi-

d i r e c t i o n .  There£ore, the components of the stress tensor  

i l l u s t r a t e d  in f i g u r e  2 .2 .1  are pos i t ive .  

F igu re  2.2.1 Sense of p o s i t i v e  stresses. 
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Once the components o£- the. stress t e n s o r  are 

known, surface forces pi (force per u n i t  area)  a c t i n g  

across any surf-ace in t h e  body, i n c l u d i n g  its boundary,  can  

be computed from 

where n s t a n d s  fo r  the components of the unit vector ;
j 

normal  to the s u r f  ace at the p o i n t  under c o n s i d e r a t i o n .  pi  

must be in te rp re ted  according to the sense of t h e  vector 

-n. It is apparent that the surface over which pi is being 

computed can be considered to divide  the  body i n t o  t w o  

others.  pi s tands  f o r  t h e  forces exerted by the body fo r  

which -n is i nwards  over the body for which -n is o u t w a r d s .  

Dynamic equilibrium of forces a c t i n q  on the 

paralle lepiped shown i n  fiqure 2.2.1 requires t h a t  

where b s t a n d s  f o r  the components o£ t h e  body forces  
j 

(force per u n i t  volume) and p is the d e n s i t y  of the body 

( m a s ç  per u n i t  volume). Time d e r i v a t i v e s  are i n d i c a t e d  

by d o t s ,  i.e., azui/at2 = ü . Equa t ions  (2.2.5)  will k
i 

re£erred t o  hereafter as the stress e q u a t i o n s  o£ mot ion .  

Furthermore, i£ there are no body moments present, 

dynarnic equilibrium of moments requites t h a t  

Let x represent t h e  p o s i t i o n  vector of a p o i n t-
w i t h i n  a body in its undeforrned c o n f i g u r a t i o n .  Under the 

act ion  of loads t h i s  point moves into a new p o s i t i o n  

described by the coord- inates  x i .  The displacement  components 
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i 
u are given by 

If the ui displacement  components are such t h a t  

t h e i r  f i r s t  d e r i v a t i v e s  are so small t h a t  the squares and 

products o£ the p a r t i a 1  der ivat ives  of ui are n e g l i g i b l e ,  

then s t r a i n s  c a n  be computed u s i n g  Cauchyls i n f i n i t e s i m a l  

s t r a i n  t ensor ,  

Consider a point P' i n  the neighbourhood of a 

p o i n t  P w i t h i n  a body. Let the coordina tes  of P and P 1  be 

represented by xi and xi+dxi r e spec t ive ly .  The r e l a t i v e  

displacement of P' w i t h  respect to P is given by 

In t h e  above expression the t i m e  v a r i a t i on  of the displacement  

f i e ld  has n o t  been i n c l u d e d ,  therefore it is v a l i d  £or t h e  

s t a t i c  case. However the d i s c u s s i o n  now under  cons ide ra t ion  

a l s o  applies  t o  e l a s t o d y n a m i c s  if one considers t h e  

displacement f i e ld  corresponding to a f ixed instant. 

Equat ion (2.2.9)  can also be w r i t t e n  as { 8 7 ]  

or 


where 
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b0d.y is ca l l ed  the.wavefront.  Wavefronts are a l s o  referred 

to as s u r f  aces of d i s c o n t i n u i t y  because stresses , s t r ains 

and ve loc i t ies  be d i s c a n t i n u o u s  there. It shou ld[%]can 

however be r e a l i z e d  that d i s c o n t i n u i t i e s  do not in r e a l i t y  

e x i s t  in t h e  phys i ca l  problem, b u t  are  mathematical 

idealizations of phys i ca l  q u a n t i t i e s  t h a t  vary rapidly i n  a 

srnall i n t e r v a l  of space and t i m e .  Wavefronts do  not need 

necessarily to be considered as moving i n t o  an u n d i s t u r b e d  

region of a body. It is q u i t e  comrnon to £ i n d  situations 

in whick a region i s  already d i s t u r b d  before the wavefront 

of an  addit i o n a l  distur bance arr i v e s . 
Consider a surface of discontinuity n moving 

th rouqh  R ;  T moves normal  t o  itself with a speed c, from the 

region !dl to t h e  region $i2as shown in f i g u r e  2.2.2. L e t  

li be t h e  components of the unit vector normal to x pointing 

o u t  from t h e  r e g i o n  1 to t h e  region 2. The jump c o n d i t i o n s  

for displacernents in R are g iven  by 

Displacements are continuous f u n c t i o n s  oE space and t i m e ,  

however stresses and  v e l o c i t i e s  can be d i scon t inuous .  In 

t h e  neighbourhood of TI the k i n e m a t i c a l  c o n d i t i o n  

as w e l l  as the dynamical c o n d i t i o n  

must be s a t i s f i e d .  
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Figure  2.2.2 Surface o£ d i s c o n t i n u i t y .  

A very important topic  in elastodynamic t h e o r y  

Iand other  branches of mathematical physics) r e l a t e s  to the 

existence and un iqueness  o£ solutions. D i s c u s s i o n s  t h a t  

can  be found in rnoâern t e x l s  17-10)  r e v e a l  that further s t u d i e s  

on t h i s  subject are still needed. The f i rs t  proof of 

u n i q u e n e s s ,  provided by Neumann { 8 8 ) ,  is based on s t r a i n  

e n e r g y  c o n s i d e r a t i o n s  and applies o n l y  fo r  bounded domains. 

It a l so  requires displacements and i t s  Eirs t  and second 

order t i m e  and space der ivat ives  (hencc stresses and strains)  

to be continuous f u n c t i o n s  of xi and t . There ex i s t s  however 

a great v a r i e t y  of e las todynamic  problems w h i c h  do  not obey 

the restr i c t i o n s  imposed by Neumann ' s uniqueness  theorem. 

Solutions to these problems have been assumed to be u n i q u e  

except i n  some situations fo r  which un iqueness  have recently 

k e n  proved {89 -91 ) .  
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S t u d i e s  concerning existente of elastodynamics 

s o l u t i o n s  have shown t h a t  t h i s  is a more complex subject .  

I n  this regard reference C91 recomrnends t h e  a r t i c le  by 

Fishera I921 where a r e l e v a n t  h i s t o r i c a l  bibliography on 

t h e  s u b j e c t  is also presented. 

The increase in volume per u n i t  volume t h a t  occurs 

when a body is deformed is c a l l e d  d i l a t a t i o n  and is g i v e n  by 

Cons ide r  a displacement field f o r  which  e=O. I n  t h i s  

s i t u a t i o n ,  no change in volume occurs and deformat ion  

c o n s i s t s  of shear and ro t a t i on  only. Assuming that the body 

forces a re  zero (bi=O) e q u a t i o n  ( 2 . 2 . 1 8 )  reduces to ( 1 0 )  

where c is given  by
5 

and v 2  is the Laplacian operator ,  i . e . ,  

Equa t ion  ( 2 . 2 . 2 7 )  is a wave equat ion for the displacement 

u . ,  governing equivolwninal waves; c is the speed o£ 
7 s 

propaga t ion  oE these waves. 

Assiqn now the v a l u e  o£ zero to the r o t a t i o n  o .
ij 

Cons ide r ing aga in  t h a t  bi=O , Navier ' s equa t i ons  reduces 
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- - - 

where cd is given by 

Equat ion  ( 2 . 2 . 3 0 )  is a wave e q u a t i o n  for the displacements  

u governing d i l a t a t i o n a l  waves;  is the speed of 
j Cd 

propagation of these waves. 

Each of t h e  displacernent body waves governed 

by equa t ions  (2 .2 .27)  and (2 .2 .30)  can be i d e n t i f i e d  

by numerous distinct phys ica l  character i s t i c s ,  For t h i s  

r eason ,  dilatational waves are also known as pr imary ,  

irrotational, compressional or longitudinal waves. The 

corresponding nams for  equivoluminal waves are secondary, 

shear , rotational, transverse and d i s t o r t i o n a l  waves . 
The d-isplacement equa t ions  of motion can be 

replaced by two scalar wave equations by ernploying Lam4 

p o t e n t i a l s ,  This procedure,  T i r s t  i n t r o d u c e d  by Larng, can 

be described by t h e  following completeness theorem 1 9 )  : 

L e t  u. ( x , t )  represent the cornponents o£ a twice-differentiable 
1 -

p a r t i c u l a r  solution of Navier's e q u a t i o n s  in a r e g i o n  of space 

D ,  for t l< t<t2 .  a -There then e x i s t s  scalar f u n c t i o n  $ ( x , t )  

and a vector f u n c t i o n  Y (x,tj, such that u i ( x , t )  5s represented 

by 

ui -- $ . + e i j k Y k  . 
r 1 1 7  

and $ and Yk s a t i s f y  wave e q u a t i o n s  
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where  a and Bk are such  t h a t  

bi =da..+e B 
,i i j k  k , j l  

I t  is i m p o r t a n t  to p o l n t  o u t  t h a t  Stokes-Helmholtz 

resolution theorem {8-10) e n s u r e s  t h a t  any s u f f  i c i e n t l y  

smooth vector may be decomposed i n t o  iwro ta t iona l  and 

solenoidal parts  as shown by equations ( 2 . 2 . 3 2 )  and (2.2.34). 

In equation ( 2 .2 .32 )  t h e  three components of the 

displacement vector ui are given  in terms of f o u r  scalar 

f u n c t i o n s ,  a s  a r e s u l t  $ and Yi can  not be complete ly  

indeperldent from each other .  An a d d i t i o n a l  c o n s t r a i n t  

very commonly found implies that the vector Yi is d i v e r g e n t  

free, i . e . ,  

Although equat ion ( 2 . 2 . 3 5 )  is very useful, other types of 

c o n d i t ions  are a lço  found In the literature, information 

on this suhjec t  can be found  in referentes 17-10}  . 
l n  an unbounded body there e x i s t s  some r e s t r i c t i o n s  

concern ing  the behaviour of fields a t  i n f i n i t y  which are 

impor tan t  to recognize  . If an unbounded body is subjec ted  to 

a d i s tu rbance  which  i s  conf ined  in a f i n i t e  r e g i o n  wi th in  

it, physical considerations r equ i r e  t h a t  there e x i s t  no 

waves propagat ing back frorn inf i n i t y  towards the i n t e r i o r  

of the body. 

In order to exemplify this fac t  t h e  wave e q u a t i o n  

[ equa t i ons  { 2 . 2 . 2 7 ) ,  ( 2 .2 .30 )  ar ( 2 . 2 . 3 3 ) )  in three 

dimensions  will be initially considered. The behaviour of 

f l e l d s  at i n f i n i t y  1 9 )  can be s t u d i e d  by c o n s i d e r i n g  a 
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l a r g e  sphere Er O£ r a d i u s  r, centered at a point C, which 

contains t h e  boundary r of f h e  r e q i o n  under cons ide ra t ion  

(see  f i g u r e  2 . 2 . 3 ) .  L e t  r approach i n f i n i t y  and  impose 

t h e  condition that the f i e l d  at Ç will n o t  receive any 

contr i b u t i o n  from E r ,  i . e  ., waves do n o t  propagate back 

from i n f i n i t y .  Then from Kirchhoff's i n t e g r a l  r ep resen ta t ion  

( equa t ion  3.5.76) one o b t a i n s  the Summerfield r a d i a t i o n  

c o n d i t i o n ,  

and the r e q u l a r i t y  condition 

c in expression ( 2 . 2 . 3 6 )  is t h e  wave propagation speed.  

I n  two d i m e n s i o n s  r a d i a t i o n  and r e g u l a r i t y  

c o n d i t i o n s  read 

1/ au - I/z 
lim r . [G+ 1li ] = O, lim r u = O . (2 .2 .38)  

c j r-bcD jr + m  

C in this case, is a circ le  o£ radius  r, r a thez  tkan a r 


sphere. 
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Figu re  2.2.3 	 Simulation of an i n f i n i t e  domain by 

an i n f i n i t e  sphere. 


Radiat ion and r e g u l a r i t y  c o n d i t i o n s  f o r  

e l a s t a l ynamic s can be worked out following procedure s 

similar to those  j u s t  described for the sca l a r  wave e q u a t i o n  1 9 ) .  

2.3 Some Simple Waves 

If the displacement is a f u n c t i o n  of one space 

var iable o n l y , 

and body forces are nu11 (bi=O) e q u a t i o n  ( 2 .2 .18 )  reduces 

to the three uncoupled one-dimensional wave e q u a t ions  { 9  ) , 

u l ,  u 2  and u3 	r ep resen t  displaceme-nt waves t r a v e l l i n g  i n  the 
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i n £ i n i t e  strip shown in f i g u r e  2.3.1,  S o l u t i o n s  of equations 

( 2 . 3 . 2 )  can  alço be regarded as r e p r e s e n t i n g  waves in one-

d i m e n s i o n a l  bodies like s t r i n g s ,  rods, etc. The 

dilatational component of t h e  displacement,  u ,  , is directed 
a long  the direction of propagation x, , whereas t h e  

equivoluminal components of t h e  d i sp lacements ,  u2 and u j  , 
are direc ted  a long d i rec t ions  perpendicular  to x,. A s  c >'cd s 

t h e  d i l a t a t i o n a l  d i s t u r b a n c e  t r a v e l s  faster  than t h e  

equivoluminal one. If t h e  plane t ha t  c o n t a i n s  xl and x 2  

in f i g u r e  2.3.1 is t h e  horizontal one ril, U2 and u3 c a n  be 

i d e n t i f  i e d  r e s p e c t i v e l y  w i t h  P, SH and SV waves of 

Figure 2.3.1 Inf  i n i t e  s t r i p  o£ w i d t h  1. 

Boundary c o n d i t i o n s  must be s p e c i f i e d  on two 

p l anes  p a r a l l e l  to each other. If the planes xl=O and x l = l  

are chosen t h e  boundary c o n d i t i o n s  can be of type  (a), (b) 

or ( c ) described below. 
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(a) displacement  boundary condi t ions  

(b) trac t i o n  boundary c o n d i t i o n s  

( c )  mixed boundar y conditions 

In add i t i on ,  initial c o n d i t i o n s  

mus t  a l s o  be prescrfbed. 

A n a l y t i c a l  solutions f o r  the one-dimensional wave 

equation are not d i f f i c u l t  to find. The general s o l u t i o n  

oE an e q u a t i o n  such as the f i r s t  o£ those given by expression 

(2 ,3.2)was f i r s t  d e r i v e d  by D'Alembert, and reads 

Equation (2 .3 .7 )  has a very simple phys i ca l  i n t e r p r e t a t i o n ;  

it can  be regarded as k i n q  composed of two one-dirnensional 

waves f ( x  -c t) and g (x,  +cdt) propaga t ing  i n  the pos i t i ve
1 d 

and negative xl - d i r e c t i o n  r e s p e c t i u e l y .  A consider at ion 

f o r  i n s t a n c e  of c o n t r i b u t i o n s  due  to f ( x , - c d t )  o n l y ,  r e s u l t  

in a conc lu s ion  tha t .  at t = O  u1= f ( x1) .  At a t i m e  i n s t a n t  

t=t, the  shape of the wave g iven  by u,=f (x,-cdt) is t h a t  which 

is obtained by d i s p l a c i n g  t k e  initial shape by a d i s t a n c e  
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cdtlin the positiue x, d i r e c t i o n  as illustrated in f i g u r e  

2.3.2.  

Figure  2.3 .2  P r o p a y a t i o n  o£ one-dimensional waves. 

A plane displacement wave propagat inq in the 

d i r e c t i o n  of an unit vector -1 can  be represen ted  by 

where xil i=d+ct d e f i n e s  planes normal t o  -1 over which ui 

is c o n s t a n t .  The argument o£ ui, x i l i - c t 4  is called t h e  

phase of the wave. Figure  2.3.3 shows t w o  planes of c o n s t a n t  

phase, L. and L,, t h a t  correspond respec t ive ly  to t = O  

and t=t,. It should  be noticed that ui over L. is equal  to 

ui over L I ,  therefore, p lane  waves have t h e  same characteristics 

05 propagat ion exh ib i t ed  by DIAlembert solution for  t h e  one-

dimensional  case. 
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Figure 2.3.3 Propagat ion of plane waves. 

Waves like those represented by e q u a t i o n  (2 .3 .8)  

o n l y  obey Navier ' s  equations if 

( 1 )  liui = k d q q  and  c=cd 

It can be demonstrated {7,8,9, I0) t h a t  waves 

d e f i n e d  by equa t ion  (2.3,8) anã which c o n s e q u e n t l y  obey 

( 1 )  and ( 2 )  in expres s ion  (2 .3 .9 )  are in fact e q u i v o l u r n i n a l  

and d i l a t a t i o n a l  d i sp lacement  waves r e spec t ive ly .  Hence, 

a complete analogy with the one-dimensional case previously 

studied can be forthcoming if one cons ide r s  that the  

coordinate axis x,  is p a r a l l e l  to t h e  d i r e c t i o n  0f propagation 

def ined by the u n i t  vector 1.-

When a displacement f i e l d  h a s  r a d i a l  symmetry 

with regard to a polnt E,, a system of spher ica l  coordinates 
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( r , 9 , $ ) ,  centered at 5 ,  is the most convenien t  to be 

employed. Due to the r a d i a l  symmetry of this problem, the 

components o£ the disglacement  i n  t h e  d i r e c t i o n  8 and $ are 

null. Hence the  displacement vector reads, 

-u ( z , t )  = u r I r , t ) e-r 

where is the unit vector in the d- i rec t ion  of the  

coordinate r .  Navier's e q u a t i o n s  (bi=O) then reduce t o  

I n t r o d u c i n g  a var iab le  @ such that ur = a equation (2.3.71)ar 
g i v e s  

which is the  w e l l  known one-dimensional w a v e  equation whose 

s o l u t i o n  (DmAlembertsolution) r e s u l t s  in 

The waves just described are known as spher ica l  waves w i t h  

r a d i a l  symmetry shortened in common use to spherical  waves. 

When t h e  displacement f i e l d  has symmetry w i t h  

regard to a line one has disturbances w h i c h  are usually 

termed c y l i n d r i c a l  waves. This problem can  Ix best 

s tudied  by u s i n g  a system o£ c y l i n d r i c a l  coordinates ( r ,B,z) 

w h e r e  z coincides w i t h  t he  l i n e  of r a d i a l  symmetry. In 

t h i s  case t h e  only var iable  n o t  e q u a l  to null is ur and the 

Navier's e q u a t i o n s  (bi=O) reduce to 
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As fo r  the case o£ spherical waves, when a variable $ such  

t h a t  ur -- -a @  is i n t r o d u c e d ,  e q u a t i o n  ( 2 . 3 . 2 4 )  c a n  be w r i t t e nar 

as 


The general s o l u t i o n  o£ equation (2.3.15) w a s  

f i r s t  derived by Larnb, and is discussed in reference (93). 

Equations (2.3.11) and (2.3.14) are p a r t i c u l a r  

ver sions of Navier ' s e q u a t i o n s , and the complete d i f ferential 

operators in cylindrical and spherical coordinates can  be 

found in textbooks concerned w i t h  the s u b j e c t .  

The body waves discussed in this s e c t i o n  are very  

o f t e n  the sub jec t  o£ discuss ion  because as a r e s u l t  of t h e i r  

s i m p l i c i t y  they make clear many concepts involved w i t h  the 

phenomena of wave propaga t ion .  

2; 4 P l a n e  Motions 

If the displacement is a f u n c t i o n  of t w o  r ec tangu la r  

coordinates only, i . e .  

u i ( s , t )  = ui(x1,x2,t) ( 2 . 4 . 1 )  

t h e  problem is termed elastodynarnic in the plane ( 9 )  or 

complete plane  s t r a i n  i 3 7 ) .  In view of e q u a t i o n  ( 2 .4 .1  ) , 

u = O and a11 other  de r iva t ives  of t h e  d i sp lacement
3 , 3  

components are  f u n c t i o n s o f  x, and x 2  only. Therefore the 

Navier's equations take the following form, 

-

G"3, kk + b3 - PU3 


where j and k can be 1 or 2. 
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The domains in which complete plane strain problems 

are studied are  i n f i n i t e  c y l i n d e r s  whose axes are pa ra l l e l  

to t h e  x 3- d i r e c t i o n .  The mathemat ica l  problem o£ so lv ing  

the differential equations (2 .4 .2 )  and ( 2 . 4 . 3 )  can  t h e n  be 

considered as two-dlrnensional. T h e  domain and t h e  boundary 

i' in t h i s  case are d e f  ined by the i n t e r s e c t i o n  of t h e  inf i n i t e  

c y l i n d e r  w i t h  the (x l , xZ )  plane.  Of course the phys ica l  

problem is three-dimensional because d i sp l acemen t s  and 

stresses i n  t h e  x 3-d i rec t ion  do n o t  e q u a l  null. Equa t ion  

(2 .2 .21)  i n  t h i s  case is w r i t t e n  as 

E q u a t i o n s  ( 2 . 4 . 2 ) ,  ( 2 , 4 . 3 )  and ( 2 . 4 . 4 )  show that e q u a t i o n s  

( 2 . 4 . 2 )  and ( 2 . 4 . 3 )  can  be solved i n d e p e n d e n t l y .  For t h i s  

reason, complete plane strain c a n  a lso  be s e e n  as resulting 

f r o m  t h e  s u p e r p o s i t i o n  of t h e  p lane  s t r a i n  and a n t i p l a n e  

motions qoverned r e s p e c i t v e l y  by equa t i ons  ( 2 . 4 . 2 )  and 

( 2 . 4 . 3 ) .  These m o t i o n s  are described in ( a )  anã (b)  below. 

( a)  Ant ip lane  mot ion  : 

T h i s  motion is governed by the scalar wave 

e q u a t i o n  (equa t ion  ( 2 . 4 . 3 ) ]  which is of the s a m e  type as 

e q u a t i o n s  ( 2 . 2 . 2 7 )  and (2.2.30) previously described in 

sect ion 2 . 2 .  T h e  boundary c o n d i t i o n s  in this case  are 

q iven by , 
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where r;+T; = r .  The initial conditions f o r  the a n t i p l a n e  

motion are w r i t t e n  as 

In t h i s  problem the  normal  stress u33 i s  null, 

therefore only the s h e a r  stresses o I 3  = and -- U3*  

are p r e s e n t  in the a n a l y s i s .  In addi t ion  t h e  vector 

r e p r e s e n t i n g  the displacement uj is perpendicu la r  to t h e  

d i r e c t i o n  of propagation o£ t h e  displacement waves. For 

these reasons t h i s  motion is also ca l l ed  shear a n t i p l a n e  or 

h o r i z o n t a l l y  polarized shear motion { a ) .  

(b) Plane s t r a i n  motion: 

Plane  s t r a i n  motions are governed by equat ion  

(2 .4 .21 ,  which is o£ the same form as Navier's equat ions  for  

three d i m e n s i o n s .  The on ly  difference is that in the present  

s i t u a t i o n  t h e  i nd ices  range from 1 to 2, rather than from 

1 to 3 .  The boundary conditions f o r  t h i s  problem are 

g iven  by 

where r = r1+r2 .  The i n i t i a l  cond i t ions  for p l ane  s t r a i n  

read 
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I n  a plane  s t r a i n  problem 

- -
U3 - €13 - c3 ,  = c Z 3  = E~~ = O ( 2 . 4  - 9 )  

However, the  stress o j j  is not nu11 and can  be computed from 

the second of equa t ions  (2 .4 .4 )  . 
When the domain o£ the problem being analysed 

does not extend to i n f i n i t y  in the x3-direct ion a plane 

s t r a i n  condition can  not be assumed to e x i s t .  In t h i s  

case a three-dimensional  a n a l y s i s  must be carried out, 

however when the dimensions of the body in the xg-di rec t ion  

are small, a c o n d i t i o n  known as plane stress can  be assumed. 

This situation occurs when a n a l y s i n g  thin p l a t e s  acted on by 

forces p a r a l l e l  to its midplane.  The plane stress hypothes i s  

assumes t h a t  

-
'33 - '31 = '13 

= a  = f l  
32  23 = O  ( 2 . 4 . 1 0 )  

1n this case the same equa t ions  of plane s t r a i n  can be used 

provided that the c o n s t a n t s  v and E are replaced by 

-
f i c t i t i o u s  ones ,  v and E, given by 

-
v = v / ( l + v )  

-
E = E(I+zv)/(I+v~) 

which implies that 
-
G = G  

-
A = 2 X G / ( X + 2 G )  . 
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~t is impor tan t  to s t a t e  that s ince  is n o t  necessar i ly  

n u l l ,  ui depends on x3 and the problem is n o t  r e a l l y  t w o -

d imens iona l .  Howeves, plane stress can  be c o n ~ i d e r e da 

good assumption when the p l a t e  being s tudied  is s u f f i ç i e n t l y  

t h i n  { 8 7 } .  
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CHAPTER 3 


BOUNDARY INTEGRAL EQUATIONS FOR SRANSIENT PROBLEMS GOVERNED 

BY THE SCALAR WAVE EOUATION 

3 . 1  I n t r o d u c t i o n  

The scalar  wave e q u a t i o n  governs many phys ica l  

phenomena such as t r a n s v e r se motions o£ str i n g s  and membr  anes , 

longitudinal motions o£ r o d s ,  e l a s t d y n a m i c  antiplane motions 

e tc .  I ts applicakion however is not o n l y  restr icted to t h e  

s imple problems just ment ioned .  The discussion o n  Lamd 

p o t e n t i a l  o u t l i n e d  in sect ion 2 . 2  i l l u s t r a t e d  t h a t  even 

ra ther  complicated d i f ferential equations can sometime s be 

reduced to a s e t  of wave equations. In addition, there is 

a n o t h e r  ve ry  i m p o r t a n t  reason fo r  s t u d y i n g  t h e  scalar wave 

equation; namely its great simplicity. Through the study 

o£ this e q u a t i o n  it is easier t o  u n d e r s t a n d  basic concepts 

and to d e r i v e  t e c h n i q u e s  of a n a l y s i s  t h a t  can  be extended 

to more cornplicated problems. T h i s  can be clearly s e e n  i n  

t h i s  work by a comparison of chapters  3 and 4 ,  which d e a l s  

with the scalar wave e q u a t i o n ,  w i t h  chapters  5 and 6 ,  

concerned with e las todynamics .  

T h i s  chapter i s  concerned w i t h  the r e d u c t i o n  of 

t h e  scalar  wave equa t i on  { d i f £ e r e n t i a l  e q u a t i o n )  to an 

i n t e g r a l  e q u a t i o n .  For t h i s  purpose Green' s f unct ions 

( fundamenta l  s o l u t i o n s )  for inf i n i t e  domains together w i t h  

a weighted residual s t a t e m e n t  are employed. Kirchhof f ' s  

i n t e g r a l  r e p r e s e n t a t i o n  is obtained and then 

t h e  two-dimensional problem is formula ted  u s i n q  the method 

of descent .  Volterra's i n t e g r a l  e q u a t i o n  C941 is then 
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rnodif ied  following the proceaure described by Mansur 

and Brebbia { 8 5 ) .  

3.2 	 The Boundarv-Initial Value P r o b l e m  - T r a n s i e n t  S c a l a r  

Wave Equation 

The boundary- in i t  ia1 va lue  problem f o r  t h e  sc alar 

wave e q u a t i o n  has  already been discussed  in sect ion 2 . 4 .  

However the n o t a t i o n  used there referred to elas todynamics .  

For t h i s  reason a descr ip t ion  o£ t h e  problem will be 

presented again together with a more conven ien t  n o t a t i o n  

and te rminology . 

The wave e q u a t i o n  can  be w r  i t t e n  in terms of 

a p o t e n t i a l  u as 

where c is the speed o£ wave ptopagation, Y describes 

space and time dependence of source d e n s i t y  and u = a2u/at2. 

T h e  r eg ion  fl in which two-dimens iona l  s o l u t i o n s  of e q u a t i o n  

(3 .2 .1 )  are sought wi11 be considered to be r egu la r  in the 

sense def ined  by Kellog { 7 7 ) ,  i . e .  the r boundary o£ can  

be composed of severa1 closed regular  surfaces whick may 

have corners o r  edges provided they are not t o o  sharp { 2 7 } .  

In order to f i n d  the p a r t i c u l a r  s o l u t i o n  to 

equa t ion  (3.2.1) corresponding to the s p e c i f i c  problem which 

needs to be solved it is necessary  t o  specify t h e  i n i t i a l  

condi t i o n s  
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and the  boundary c o n d i t i o n s  
-

U = U  	 on r l  
( 3 . 2 . 3 )au - -

P = u  n = - - P on 3', i i  an 

where r = r 7 + r 2  and n is t h e  coordinate in the direction 

p a r a l l e l  t o  the u n i t  o u t w a r d  vector -n ,  normal to r.  

3 . 3  Dirac Delta and  Heaviside Func t ions  

When studying Green's f u n c t i o n s  it is convenien t  

to employ the Dirac d e l t a  function { 5 6 ) .  In one dirnension 

the Dirac  delta is d e f i n e d  by 

I6 (x-a) = O when x # a and 

The der iva t ives  of the Dirac delta are funct ions such that, 

( 3 . 3 . 2 )  

,i:. 6 ( k )  (x-a)f(x)dx = ( - ~ ) ~ f ' ~ )  I(a) 


a k  	 a kwhere 6 (x-a) and f (k)(a )  stand for  	TS (x-a)  and kf ( x )/ 
ax ax x=a 

re spect ive l y . 
The d e f i n i t f o n  of t h e  Dirac d e l t a  function c a n  be 

e a s i l y  extended to domains which are n o t  one-d i m e n s i o n a l  . 
When a two- or three-dimensional domain R is considered t h e  

Dirac d e l t a  can be def ined  as follows, 
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rd(q-s) = O  when s # q , and 

where s and q r e p r e s e n t  two points w i t h i n  0,. 

Two-dimensional Green's f u n c t i o n s  corresponãing 

to equa t ions  ( 2 .2 .18 )  and ( 3 . 2 . 1 )  can be convenien t ly  

represented u s i n g  the Heaviside f u n c t i o n  (see f i g u r e  3 . 3 . 7 )  

given  by, 

1 i£ x>a , 
H (x-a) = 

,O if x<a . 

Figure 3 . 3 . 1  The Heavis ide  function. 

The Dirac d e l t a  and Heaviside f u n c t i o n s  can be 

r e l a t e d  to each other as £ollows 

d-H(x-a) = 6 (x-a) . ( 3 . 3 . 5 1dx , 

In t h e  d iscuss ion  just carried out, def initions 

and also ce r t a in  basic propert ies of the Dirac d e l t a  and the 

Heaviside f u n c t i o n s  were presented. Additional proper t ies  
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to t h e  anes p r e u i o u s l y  described will be in t roduced  where 

r equ i r ed .  For a r . igorous  and d e t a i l e d  d i s c u s s i o n  on t h i s  

s u b j e c t  a t t e n t i o n  should be direc ted  to referentes I 9 5  and 

9 6 ) .  

3 . 4  	 Fundamental  s o l u t i o n  in Three Dimensions - T r a n s i e n t  

Sc alar Wave E q u a t i o n  

The Green's function (fundamental solution) for 

t h e  scalar wave e q u a t i o n  is the s o l u t i o n  of e q u a t i o n  ( 3 . 2 .  I ) 

f o r  an unbounded domain {6,9) and a p a r t i c u l a r  concentrated 

source ,  i . e .  

y = 4 . r r B ( q - s ) b ( t - . í )  . ( 3 . 4 . 1 )  

Equa t ion  ( 3 . 2 . 1 )  , i n  t h i s  case, c a n  then be w i t t e n  as 

vZu* - U * / C  = - 4 n 6  (q-S) 6 (t-T) . ( 3 . 4 . 2 )  

Thus u* is t h e  e f fec t  of a source represented by an impulse 

at t = ~located at q=s, whilst q and s are referred to in 

t h e  literature as observation (field) and source points 

r e s p e c t i v e l y .  

The fundamental s o l u t i o n  represented by e q u a t i o n  

( 3 . 4 . 2 )  has t h e  following proper t i e s  {6,9): 

(i) c a u s a l i t y  


u * ( q , t ; s , - r )  = -
O whenever c ( t - ~ ) < \ q - s I  ( 3 . 4 . 3 )  

(ii) r e c i p r o c i t y  


U* ( q , t ; ~ , T )  = u*(s,-T;q,-t) 


( iii) t i m e  tr a n s l a t i o n  

U* (q,t+t, ;S,T+t,) = U* ( q r t ;S, T )  

In t h ree  d i m e n s i o n s  the  solution of equat ion 

( 3 . 4 . 2 )  i s  g iven  by { 6 , 9 )  
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where r = r ( q , s )  = g - s ) ,  as shown in f i g u r e  3.4.1. In 

reference 19) substitution o£ u* given by e q u a t i o n  ( 3 . 4 . 6 )  

i n t o  equa t ion  ( 3 . 2 . 1 )  is carried o u t  in order to i l l u s t r a t e  

that the first is a s o l u t i o n  of t h e  second. A r i g o r o u s  

d e r i v a t i o n  of expression ( 3 . 4 . 6 )  c a n  be found  in reference 

16 I 

F i g u r e  3.4.1 D e f i n i t i o n  of the vector 9-S.-

3.5 Kirchhoff  I n t e g r a l  Represen ta t ion  

When t is rep laced  by T, e q u a t i o n  ( 3 . 2 , l )  is 

w r i t t e n  as 

1: a2u(q,r)
v 2 u ( q t ~ )- a +  = 3 ~ ( g t ~ )  ( 3 .5 .1 )  

From t h e  reciproci ty  property e q u a t i o n  ( 3 . 4 . 2 )  

can be w r i t t e n  as { 6 )  

43



I a2u*(q,t;s,r) = - C? (q-s)6 ( t - - r )~ ~ u * ( ~ , t : s , r )  - - a T 2 
- 4 ~ 6  , 

It is now conven ien t  to i n t r d u c e  a n o t a t i o n  which 

will be employed. l a te r .  I n  future source and f i e l d  points 

when over the r boundary will be denoted r e s p e c t i v e l y  by 

S and Q .  

In order to deduce a s i n g u l a r  boundary i n t e g r a l  

e q u a t i o n  f o r  the problem it is necessary to consider two 

distribution of potentials u* and u t h a t  s a t i s f y  r e s p e c t i v e l y  

equa t ions  ( 3 . 4 . 2 )  and ( 3 . 5 . 1 ) .  In add i t ion ,  u* and u are 

assumed to be d i s t r i b u t e d  respec t i v e l y  over t h e  r e g i o n s  R+r 

and fi*+r* (see f i g u r e s  3.5.1 and 3 .5 .2 )  which have t h e  same 

physical propert ies and are such t h a t  8* c o n t a i n s  B + r .  

Only fundamental s o l u t i o n s  c o n c e r n i n g  the i n f i n i t e  space 

are used in t h i s  w o r k ,  t he re fo re  r* must be placed at 

i n f i n i t y  and u* must obey the r ad i a t i on  and r e g u l a r i t y  

conditions g i v e n  r e s p e c t i v e l y  by equa t i ons  ( 2 . 2 . 3 6 )  and 

( 2 . 2 . 3 7 1 ,  I t  is irnportant to recognize that a procedure 

s i m i l a r  t o  t h e  one described in t h i s  chapter  can a l so  be 

used when t h e  f u n d a m e n t a l  s o l u t i o n s  employed do not relate 

to the  i n f i n i t e  space {34,36,54}. 

A weighted r e s i d u a l  s ta tement  for the problem 

under  consideration can be w r i t t e n  as €20 -22 )
+ 

r t  r 
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Figure  3 . 5 . 1  Three-dimensional r eg ion  R + T .  

F igure  3.5.2 Region R*. tT*  containing Sl-ti' .  
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au* +where  p* = - t in e q u a t i o n  ( 3 . 5 . 3 )  represents t+&,an ' 

E being a r b i t r a r - i l y  s m a l l .  Applying t h i s  procednre avoids  

t e r m i n a t i n g  the i n t e g r a t i o n  e x a c t l y  at the peak of a Dirac 

de l t a  f u n c t i o n .  In e q u a t i o n  ( 3 . 5 . 3 )  space i n t e q r a t i o n  and 

der iva t ives  refer t o  the coordina tes  of the f ield p o l n t s  

q or Q .  Applying the  divergence theorem t w i c e  to the t e r m  

of e q u a t i o n  ( 3 . 5 . 3 )  t h a t  c o n t a i n s  the L a p l a c i a n  operator  

( v 2 u )  and i n t e g r a t i n g  by par t s  twice w i t h  respect  to .r t h e  

term t h a t  c o n t a i n s  t h e  time d e r i v a t i v e  -a2U the following
2 ~ 2  


expression is obtained (see appendix A) 

B e a r i n g  in mind equation ( 3 . 5 . 2 )  and that due to t h e  

c a u s a l i t y  property 

equa t i on  ( 3 . 5 . 4 )  c a n  be w r i t t e n  as 
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where 

When t h e  Dirac d e l t a  p r o p e r t i e s  are appl i ed  to the  second 

t e r m  on the le f - t -hand side of equa t ion  ( 3 . 5 . 6 )  t h e  following 

i n t e g r a l  e q u a t i o n  is obta ined ,  

In the ope ra t ions  carried o u t  to obtain e q u a t i o n  

( 3 . 5 . 8 ) ,  u was assumed to be twice d i f fe ren t iab le  w i t h  

respect t o  t i m e  and space coordinates. However, this may 

no t  be the c a s e  in many wave propaga t ion  problems. Therefore 

f u r t h e r  studies concerning this s i t u a t i o n  are still r equ i red .  

The p r o p e r t i e s  of t h e  Dirac delta f u n c t i o n  c a n  be 

used to eliminate t h e  t i m e  i n t e g r a t i o n s  in equation (3-5.8) 

{5,6,9,60). Tak3nq into c o n s i d e r a t i o n  u* g i v e n  by e q u a t i a n  
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( 3 . 4 . 6 )  the. following opesa t ions  can be carried. o u t  f o r  the 

first term on the r igh t -hand  side of e q u a t i o n  ( 3 . 5 . 8 )  , 

where t s t ands  f,or 'retarded timef, equalito Ct-r/c1. r 

The fundamental t r a c t i o n  can  be çomputed from 

The d e r i v a t i v e s  indica ted  in equa t ion  (3 .5 .10)  refers to 

boundary p o i n t s  Q .  Using  formula ( 3 . 4 . 6 ) ,  p* can b w i t t e n  

Equat ion  (3 .5 .11 )  can a l so  be w r i t t e n  as 

Xn view of expression ( 3 . 5 . 1 2 )  the second t e r m  on the 

r iqh t -hand  s ide  of e q u a t i o n  (3.5.8) can be w r i t t e n  in 

the  following way 
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Taking e x p r e s s i o n  ( 3 . 3 . 2 )  into cons idera t ion  t h e  f o l l o w i n g  

equation is then obtained 

The i n t e g r a l  invo lv ing  source d e n s i t y  in equa t ion  (3.5.8) 

can be operated as f ollows, 

Dirac d e l t a  propert ies  can  a lso  be applied to t h e  t e r m s  

t h a t  involve  i n i t i a l  c o n d i t i o n s  (9) in e q u a t i a n  ( 3 . 5 . 8 ) .  

The f i n a l  i n t e g r a l  e q u a t i o n  then obtained has the following 

Eorm 

where Mo and No are r e s p e c t i u e l y  the mean v a l u e  of u and 
O 

v over a spherical  surface w i t h  c e n t r e  at s and w i t h  a 
O 


variable r ad iu s  c.t .  It should  be noticed t h a t  as a result 

of the c a u s a l i t y  p rope r ty ,  when t <O t h e  terms on t h e  r-

r i g h t - h a n d  s i d e  of expression ( 3 . 5 . 1 6 )  give no c o n t r i b u t i o n  
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Equation ( 3 . 5 . 1 6 )  is known as t h e  Kirchhoffls 

integral representa t ion  and can  be considered as the 

mathematical representation of Huygens' p r i n c i p l e  { 6 , 9 7 ) .  

The s i n g u l a r  i n t e g r a n d s  of t h e  i n t e g r a l s  referring 

t o  i n i t i a l  conditions in equation ( 3 .5 .8 )  have been 

e l imina t ed .  However computa t ion  of source d e n s i t y  

c o n t r i b u t i o n s  require s i n t e q r a t i o n s  o£ a s i n g u l a r  f u n c t i o n  

1 t o  he performed. Thiç  is n o t  much of a problem and 

can  e a s i l y  be done n u m e r i c a l l y  u s i n q  t h e  o r d i n a r y  concept 

of i n t e g r a t i o n .  

K i r c h h o f f  ' s  i n t e g r a l  r ep resen ta t ion  can be used to 

compute u at i n t e r n a 1  p o i n t s  in terms of u ,  -au and -au on t h e  
an a -r 

i' boundary and in terms o£ source d e n s i t y  and i n i t i a l  

c o n d i t i o n s .. However , in a well-posed problem u and p are not  

known over the e n t i r e  r baundary. As a r e s u l t  equa t ion  

(3.5.16)  a l o n e  does n o t  represent the complete s o l u t i o n  

o£ the boundar y - i n i t i a l  va lue  problem descr ibed in s e c t i o n  

3 . 2 .  A boundary i n t e g r a l  equa t ion  from which boundary 

unknowns can be computed, can  be derived by t a k i n g  equation 

(3 .5 .16 )  to the r boundary. The i n t e g r a l  e q u a t i o n  obtained, 

unlike Kirchhoff ' s representa t ion  , has boundary i n t e g r a l s  o£ 

s i n g u l a r  Eunc t ions  which must be computed in the Cauchy 

p r i n c i p a l  value  sense . The a n a l y t i c a l  manipulations required 

wiL1 be described next. 

When t h e  r boundary is assumed to s a t i s f y  the 

Liapunov smoothness cond i t i on  { 2 7 ] ,  the domain R c a n  k 

augmented by a small hemisphere of r a d i u s  E ,  whose c e n t r e  

is at a boundary p o i n t  S as depic ted  i n  figure 3.5.3; 
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r E  displayed in t h i s  f i g u r e  i s  the boundary of the hemisphere 

In this situation, when initial conditions and source d e n s i t y  

are not considered,  equa t ion  ( 3 . 5 . 1 6 )  can  Ix w r i t t e n  as 

wher e 
r 

Figure 3.5.3 Domain augmented by a hemisphere of r a d i u s  

E whose centre is at a boundary point S. 
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When E+O;  r-rE+r, and as shown in appendix B 

Therefore f o r  boundary points located on smooth par t s  o£ 

the  r boundary t h e  following boundary i n t e g r a l  e q u a t i o n  

can be w r i t t e n ,  
r 

It should be not iced t h a t  t h e  i n t eg r a l s  o u t l i n e d  

in equation ( 3 . 5 . 2 2 )  are to be computed i n  the Cauchy 

p r i n c i p a l  value sense. 

It is important  to p o i n t  o u t  that at p o i n t s  s 

located outside Q+i' the p o t e n t i a l  i s  equal to zero.  The 

i n t e g r a l  e q u a t i o n  corresponding to t h i s  situation c a n  be 

obtained by making the l e f t - h a n d  s ide  of e q u a t i o n  ( 3 . 5 . 1 6 )  

equal to zero, i.e., u ( s , t )  = 0 .  

O c c a s i o n a l l y  a physical phenomenon can be best 

represented by a concentrated source given as 

where qc g i v e s  the position of the source.  The last 

i n t e g r a l  on the r i g h t - h a n d  s i d e  of equa t i on  ( 3 . 5 . 2 2 )  then 
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where rc = /S- g c /  and tc = t - rc/c . 

The numer ica1 implementation o£ equat i o n  ( 3 .5 .2  2 )  

is d iscussed  in reference (601.  A special  fea tu re  o£ the 

three-dimensional a n a l y s i s  is t ha t  no time i n t e g r a t i o n  is 

requi red .  The same does not apply for  the two-dimensional 

case as w i l l  be shown in the  next sect ion.  

3.6 	 Two-Dimensional Boundary Integral Equation - T r a n s i e n t  

Scalar Wave Equa t ion  

As p r e v i o u s l y  described in s e c t i o n  2 . 4  a two-

d i m e n s i o n a l  problem can be seen as a three-dimensional  one 

in which u is a function of t w o  r ec t angu la r  coordinates 

only, i . e .  

Expression (3 .6 .1  ) implies that t r a c t i o n s ,  source d e n s i t y  

and i n i t i a l  c o n d i t i o n s  are also independent of x 3 .  In t h i s  

case the domain in which t h e  problem is s t u d i e d  can be 

considered to be a cy l inde r  whose a x i s  has i n f l h i t e  l e n g t h  

and  is p a r a l l e l  to the  x3-d i rec t ion .  Then, t h e  two-dirnensional  

domain S1 and the l' boundary are def ined by t h e  i n t e r s e c t i o n  

of the c y l i n d e r  with t h e  (x,  , x2 )  p lane  as depicted in f i g u r e  

3 . 6 . 1 .  Therefore , for t h i s  p a r t i c u l a r  thsee-dimensional 

situation t h e  f i r s t  t e r m  on the r ight -hand side o£ e q u a t i o n  

( 3 .5 .8 )  can be operated as o u t l i n e d  below 
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Figu re  3.6.1 	 Two-dimensional domain with a Kelloq type 

r boundary.  

where usD i s  t h e  two-dimensional fundamental s o l u t i o n  g iven  
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The subscwipts symbols 2U and 3D used in equations ( 3 . 6 . 2 )  

and ( 3 . 6 . 3 )  indicate  r e s p e c t i v e l y  t w o - and thsee-dimensions 

and will be used hereafter only when con fus ion  i s  a 

possibility. 

Transformatioris s i m i l a r  to the  ones shown i n  

e x p r e s s i o n  ( 3 . 6 . 2 )  can be carried out on t h e  o ther  i n t e g r a l s  

in equa t ion  (3 .5 .8) .  When the r e s u l t i n g  express ion  is t a k e n  

t o  the r boundary t h e  following i n t e g r a l  e q u a t i o n  is obta ined  

where  u* = U*2D is g i v e n  by expression (3.6.3) and 
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It should k u n d e z s t o d  t h a t  as i t  i s  clear thak equation 

(3.6.4) refer s to two-d-imensions , the subsc r ip t  symbol 2D 

was n o t  used in t h a t  case. 

In the three-dimensional a n a l y s i ç , o n l y  Liapunov  

boundar ies  were considered, hence c ( S )  in that s i t u a t i o n  

was equal  to f / 2 .  However , in the two-dimensional 

formulation a g e n e r a l i z a t i o n  w a s  i n t r o d u c e d ,  namely that 

the r boundary can  be o£ Kellog t ype .  The parameter c ( S )  

in this case, as shown in appendix B ,  is represented by 

c ( S )  = -a (3.6.5)
2~ 

where a is the i n t e r n a 1  angle depicted in f i g u r e  3 . 6 . 1 .  

In a similar manner to the three-dimensional  case, two-

dimens iona l  i n t e g r a l  e q u a t i o n s  t h a t  apply t o  p o i n t s  located 

i n s i d e  and  o u t s i d e  R + T  can be obtained by c o n s i d e r i n g  c (SI  

i n  equation ( 3 . 6 . 4 )  t o  be r e s p e c t i v e l y  e q u a l  to one and 

zero. 

The methodology used here t o  obtain a two-dimensional 

boundary i n t e g r a l  e q u a t i o n  f o r  t h e  scalar wave e q u a t i o n  is 

ca l led  t h e  method of descent i6 and 9 ) .  Wscending from the 

three space d i rnens ions  is n o t  the o n l y  choice in f o r m u l a t i n g  

the two-dimensional problem. If the sarne procedure described 

in s e c t i o n  3.5 had been applied for t h e  two-d imens iona l  

case, the r e s u l t  would k that equation ( 3 . 6 . 4 )  would have 

been obtained again. 

The two-d imens iona l  f u n d a m e n t a l  solution evolved 

from c a r r y i n g  o u t  the  i n t e g r a t i o n  indicated i n  express ion  

( 3 . 6 . 3 )  { f o r  further details see appendix C) is 
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The i n t e g r a l  e q u a t i o n  for t h e  two-dimensional 

scalar wave e q u a t i o n  was f i r s t  obtained by Vol te r r a  I94 1 .  

A comparison b e t w e e n  Volterra's and Kirchhof f ' s  fo rmulas  

d i s p l a y s  a s i g n i f i c a n t  d i f  ference k t w e e n  t w o - and three-

dimensional waves . Kirchhoff ' s formula  demonstr ates  t h a t  

at a t i m e  t, o n l y  the s i g n a l  emit ted at a p o i n t  s at a t i m e  

(t - Is-s 1 / c )  af fec ts  a point q. Volterra's fo rmula ,  

however, i m p l i e s  that i n  two d imens ions  a point q is affected 

at an instant t, by s i g n a l s  emit ted at a p o i n t  s ,  at a11 

t i m e s  p rev ious  to (t - Iq-s ( / c )  . A more comprehensive 

d i s c u s s i o n  of this i n t e r e s t i n g  discrepancy o£ behav iour  of 

t w o - and three-dimensional  waves can  be found i n  refcrences 

(6 and 9 ) .  

In  a d d i t i o n  to k i n g  of g r e a t  benef it to the 

more complete understanding of wave propaqation phenomena, 

Volterra's formula  c a n  alço be used t o  obtain analytical 

s o l u tions. However it has  to undergo f u r thes t r a n s f ormationç 

before it can be used i n  a numerical analysis. 

3.7 Additional T r a n s f ormations t o  Volterra's Intear a1 

Representat ion  

The objective o£ the ope ra t ions  carr ied o u t  i n  

(i) and (ii) t h a t  follow Ss to remove t h e  t i m e  and space 

d e r i v a t i v e s  of the Heaviside f u n c t i o n  t h a t  appear i n  

Volterra's i n t e g r a l  e q u a t i o n .  

(i) The second t e r m  on the r i gh t -hand  s ide  o£ equa t i on  

( 3 . 6 . 4 )  can bs operated as f o l l o w s ,  
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S u b s t i t u t i n g  formula  (3 .6 .9 )  into expression (3 .7 .1  ) , the 

following expression is obtained 

C 

2c 
 -ar" [ cH c (t-r)-r11 d-rdr . 
( 3 . 7 . 2 )

c2 (t-T) 22 - r  

F u r t h e r  ope ra t ions  mus t  now be performed on the second 

t e r m  o n  the r igh t -hand side of e q u a t i o n  (3 .7 .2 )  . The 

following r e l a t i o n s h i p  will k used 

There£ore , u s i n q  t h e  n o t a t i o n ,  
- 7-2 

L = L(r,t,r) = 2 Cc2(t--t12-r 

- 7 2  
= ~ ~ ( r , t , ~ )2 ( c 2 t 2 - r 2 )= 

and bea r ing  in mind expressions ( 3 . 3 . 1 )  and ( 3 . 7 . 3 )  the 

f o1lowing transf ormat i o n s  c an be c arr i ed  o u t  
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ct-r 


a ( u L ) d ( c r ) d T  - ar U L ct-r1 
= - 1 1 ~ [ C T )  

-a n o o  H L dr 

O 


- u L R ct-r dT .-1 
r 
;n . . 1 

Taking expressions (3.7.11, ( 3 . 7 . 2 1 ,  ( 3 .7 .4 ) ,  ( 3 . 7 . 5 )  and 

( 3 . 7 . 6 )  into cons ide ra t ion  the fo l l owing  expression can bs 

der ived 
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(ii) The f o l l o w i n g  property of fhe Heaviside f - u n c t i o n  

is required in the transformations regard ing  t h e  t h i r d  

term of t h e  r ight -hand side of equat ion  ( 3 . 6  - 4 )  , g iven  by 

Taking account  of expression (3.6.9) it i s  possible to wite 

2c - H ct-r d Q  . 
O 
 a" [ C  11

4 ~ 2 t 2 - r 2  


A f u r t h e r  investigation concerning the second t e r m  on t h e  

r ight-hand side of expression (3 .7 .10)  is now requi red .  If 

t h i s  t e r m  is c a l l e d  12, and a sys t em o£ polar coordina tes  

is adopted ( s e e  f i g u r e  3.7 .1 )  whose o r i g i n  is at the source 

point s,  I2 can  be w r i t t e n  as 

where O 1  = 0,  O 2  = 27~and 

r r ( e )  = r ( s . ~ )= lo-51 ( 3 . 7 . 1 2 )  

d e f i n e s  the r boundary in po la r  c o o r d i n a t e s  (see f i g u r e  3 . 7 . 1 ) .  
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Figure  3 . 7 . 1  Sys te f l  of polar coordinates.  

If expression ( 3 . 7 . 7  1) is i n t e g r a t e d  by pa r t s  w i t h  respect 

to r, the following expression is ob ta ined ,  

Fur ther  manipulations g ive  
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The f irst i n t e g r a l  on the r igh t -hand  s ide  of expression 

( 3 . 7 . 1 4 )  can be transformed by applying t h e  following 

formula (see appendix D )  

and  so it i s  possible to write 

Taking expressions ( 3 . 7 . 5 ) ,  ( 3 . 7 . 1 0 ) ,  ( 3 .7 .14 )  and (3.7.16)  

into cons ide r a t i o n , the following re l a t i o n s h i p  can be s t a t e d  
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H t-r] dfi 

The last terms on t h e  r ight-hand side of expressions ( 3 . 7  - 7 )  

and (3 .7 .17)  will cancel out within equa t ion  ( 3 . 6 . 4 )  to 

produce the f i n a l  i n t e g r a l  s t a t e m e n t  which for points located 

on the r boundary is w r i t t e n  as 

where u* and uS, are qiven respect ively  by expressions 

(3 .6 .9 )  and  ( 3 . 5 . 7 ) ,  

and v i n d i c a t e s  ve loc i ty  as g i u e n  by 
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It should be recognizcd  tha t .  e q u a t i o n  (3 .7 .18)  can 

a l s o  be used fo r  p o i n t s  i n s i d e  t.he domain LI. As s ta ted  

p r e v i o u s l y ,  c ( s )  f i u s t  be regarded as equal  to 1 in this 

s i t u a t i o n .  

Two d f s t i n c t  types of sinqularities can occur 

in t h e  i n t e g r a n d s  o£ e q u a t i o n  ( 3 . 7 . 1 8 ) .  The  f i r s t  type of 

s i n q u l a r i t y  occurs in the i n t eg ra l  of the initial condi t ions  

when r=O and in the boundary i n t e g r a l s  when r and c (t-T) 

are simultaneously null. The second type  of s i a g u l a r i t y  

occurs  at p o i n t s  locat-ed at t h e  f r o n t  of the wave represented 

by t h e  Green's f u n c t i o n ,  t h a t  is, in the boundary and source 

d e n ç i t y  i n t e g r a l 5  when r=c (t-T), and i n  the i n t eg r a l s  of 

t h e  i n i t i a l  c o n d i t i o n s  when r-t. Nevertheless numerical 

i n t e g r a t i o n  of e q u a t i o n  (3.7.18) does not present any 

notable  d i f f i c u l t y  as it will be discussed in t h e  next 

c h a p t e r . 
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CHAPTER 4 

BOUNDARY ELEMENT METHOD FOR TWO-DIMENSIONAL TRANSIENT PROBLEMS 

GOVERNED BY THE SCALAR WAVE EQUATION 

4 . 1  Introduction 

T i m e  and space i n t e r p o l a t i o n  f u n c t i o n s ,  similar t o  

the ones used in f i n i t e  elements, can be employed to t ransforrn 

t h e  i n t e g r a l  equa t i on  (3 .7 .  f 8) Fnto  a system o£ algebra ic  

e q u a t i o n s  whose s o l u t i o n  supplies the boundary unknowns u 

and p .  The potential u ( s , t )  at i n t e r n a l  points  c a n  t h e n  be 

calculated by  using e q u a t i o n  ( 3 . 7 . 1 8 )  w i t h  c ( S )  = 1. T h i s  

proceduse is standard in boundary e l e m e n t  formulations 

I20 and 21 ) ;  b u t  a d i s c u s s i o n  about this s u b j e c t  is necesçary 

in order to c l a r i f y  c e r t a i n  fac tors  w h i c h  only appear in t h e  

problem under consider at i o n .  

The u s u a l  time marching schemes consider e a c h  

t i m e  s t e p  as a new problern and consequen t l y  at t h e  e n d  of 

each t i m e  i n t e r v a l ,  v a l u e s  of displacements and veloci t ies  

are calculated f o r  a s u f f i c i e n t  number of internal points; 

t h i s  is in order to use them as pseudo-initial c o n d i t i o n s  

fo r  the n e x t  step, i . e .  the i n t e g r a l  equa t ion  ( 3 . 7 . 1 8 )  

is app l i ed  fron O to At, A t  to 2At etc. In t h i s  thesis 

however t h e  time i n t e g r a t i o n  process  is a lways  considered 

to s t a r t  at the t i m e  ' 0 '  and so v a l u e s  of d i sp lacements  

and veloci t ies  do not need to be c a l c u l a t e d  a t  Intermediate 

steps.  With  t h i s  psocedure the domain discretization is 

r e s t r i c t e d  to regions where source density and i n i t i a l  

c o n d i t i o n s  do n o t  disappear .  Domain i n t e g r a t i o n s  a t  a 

t i m e  s t e p  ' j' are then avoided at t h e  c o s t  of hav inq  to 
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compute time integrations for all time steps previous to ' j ' .  

This techniqrie is especially suitable for i n f i n i t e  and 

s e m i - i n f i n i t e  domains. A comparison of the  performance of 

both t e c h n i q u e s  for  transient heat t r a n s f e r  problems can be 

found  in reference { 3 5 ) .  

The examples presented i n  this chapter illustrate 

the n u m r i c a l  procedure o£ s o l u t i o n  implemented in t h i s  

t h e s i s  and also show the degree of accuracy that can be 

expected from t h i s  scheme. The examples also e luc ida te  other 

important factors  such as the number o£ i n t e g r a t i o n  p o i n t s ,  

and also the r e l a t i o n  between boundary e lements  l e n g t h  and 

time s t e p  s i z e  t h a t  are s u i t a b l e  in the numer i c a l  a n a l y s i s .  

4 . 2  Numerical Imp lemen ta t ion  

In this s e c t i o n  t h e  n u m e r i c a l  i rnp lementa t ion  of 

equation (3 .7 .18 )  is discussed. Occasional ly  the  summation 

symbol is used ins tead  of t h e  summation conven t ion  def ined  

by e q u a t i o n  ( 2 . 2 . 1 ) .  This is done t o  s i m p l i f y  the 

comprehension of certain equat ions,  and in this case summation 

symbols i n v a l i d a t e  summation conven t ion  over repeated i nd ices .  

4 .2 .1  Boundary Integrais - In order to implement a numerical  

scheme to solve equa t ion  ( 3 . 7 . 1 8 )  , it is necesçary to 

consider a set of discrete p o i n t s  (nodes)  Q j = 1 ,  ...,J on 
1 '  

t h e  r boundary, and also a s e t  o£ values o£ t i m e  tn, 

n = 1 , .  . . ,N. u ( Q , t }, v ( Q , t )  and p ( Q , t )  can be approximated 

using a s e t  of i n t e r p o l a t i o n  f u n c t i o n s  as i n d i c a t e d  below 

66



where rn and j refer to t i m e  and space r e s p e c t i v e l y .  mm(t), 

q j  ( Q ), e m ( t )  and v .  (9)are chosen such t h a t
3 

n j  (Qi) = 6 i j  

v .  (Qi) = 6 i j
I 


$
m 

( t n l  = 6mn 


m 

8 (t,) = 8mn 

where 8 . .  is the Kronecker d e l t a  def ined  by expression
1S 

( 2.2.2) . Therefore 

If e q u a t i o n  ( 3 . 7 . 1 8 )  is w r i t t e n  f o r  every node i 

and f o r  e v e r y  v a l u e  o£ t i m e  tn, and u ,  v and p are replaced 

by t h e i r  approximations g i v e n  by expression ( 4 . 2 . 1 ) ,  the 

following system 05 algebraic equa t ions  is then 

obtained 
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where 


T t  should. be recognized t h a t  the t h i r d  t e r m  on 

the r igh t -hand  side of e q u a t i o n  ( 4 .2 .7 }  is the sum of the 

f i t s t  and third terms of the i n t eg r and  o£ the f o u r t h  

i n t e g r a l  on t h e  r iqht-hand s ide  of e q u a t i o n  (3 .7 .18)  . 

L e t  Atm be such that $ m ( ~ )  = O whenever 

r<tm-Atm (see figure 4 . 2 . 1 . a )  and allow t o  be a dornain 
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bounded by a c i rc le  of r ad ius  c (t ,- t ,+At,)  w i t h  centre at 

the node i (see f i g u r e  4.2.l.b). 

Figu re  4 . 2 . 1  Interpolation f u n c t i o n  @ m ( r ), domain $2ym and 

nmboundary seqments  Tc and i' 
I 

A coe f f i c i en t H:? g i v e n  by equa t ion  ( 4 .2 .5 )  is 

nu11 whenever T.~TP= O
I 

, o is t h e  nu11 space,rcm i i s  rncy  

and r is such  t h a t  $.(Q) =Owhenever Q{T It should  be
j J j ' 

noted that a s i m i l a r  d i s c u s s i o n  leads to similar c o n c l u s i o n s  

f o r  the coef f ic ien ts  ~ 2 7given by expression ( 4 . 2 . 6 ) .  

If arrn is cYrnfl,Q,then due to the c a u s a l i t y  

nprope r ty ,  F: and Si given r e ç p e c t i v e l y  by e x p r e s s i o n s  ( 4 . 2 . 7 )  

and ( 4 . 2 . 8 )  , can  be obtained by c a r r y i n y  out domain 
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i 

i n t e q r a t i o n s  over aino on ly ,  where a r 0  is e q u i v a l e n t  to 

finm fo r  tm = ~t~= O.  

I£ the d i scuss ion  j u s t  ca r r i ed  o u t  is t a k e n  i n t o  

consider at i o n  computer t irne can  be saved . 
Due to the d i f f  i c u l t y  to v i s u a l i z e  how boundary 

unknowns v a r y  w i t h  t i m e  it is u s u a l  t o  adopt 

t,+,-tm = At = c o n s t a n t  . ( 4 . 2 . 9 )  

In this case $m(t)can be assigned the t i m e  t r a n s l a t i o n  

proper ty ,  i . e .  

mrn(t)= mm+l(t+int> . 
Hence 

If expression ( 4 . 2 . 1 1 )  is taken  into consideration, a 

large number o£ redundant opera t ions  can be avoided in t h e  

numer i c a l  a n a l y s i s .  

A time-stepping scherne in which e q u a t i o n  ( 4 . 2 . 4 )  

is successively solved for n = 1 , .  . . ,N c a n  be used to ca l cu l a t e  

unknownç uN and qN at t h e  t i m e  tN. The actual n u m e r i c a l  
j j 

implementation of such a scheme requires,  of c o u r s e ,  the 

spec i f i ca t ion  o£ the type of i n t e r p o l a t i o n  f u n c t i o n  to be 

used; t h i s  will be considered next. 

I n i t i a l l y  l i n e a r  t i m e  i n t e r p o l a t i o n  functions 

$ m ( ~ )  and o r n ( ~ ) (see  f igure  4 .2 .2 )  will be considered, i .e.  
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(O otherwise  . 

Figure 4.2.2 	 Linear time interpolation f u n c t i o n s  f o r  u and 

p on t h e  r boundary.  

The substitution o£ expressfon (4.2.12) into 

formulas  ( 4 . 2 . 5 )  and ( 4 . 2 . 6 )  g i v e s  

nm nm 	 nm
H i j  = ( H . )  + ( H .  . )I 1 J F  

where 


nm = - ~ 1 c ~ . { ~ ) l[(T-tm-l)Bi *" + 1 u;yd.rdr(Hij)= dt 	 an 3 C 
T i - C 
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In express ion  ( 4 . 2 . 1 4 )  

nm nm

When @"(.r) and g r n ( ~ )are l i n e a r ,  H i j  and G . . are 

11 


nu11 whenever m>n because in t h i s  s i t u a t i o n  

as i l l u s t r a t e d  in f iqure 4.2 .3 .  

Figure 4 . 2 . 3  I l l u s t r a t i o n  of a situation in which  
rm - nm = O. 

H i j - G i j  
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The t i m e  i n t e g r a t i o n  ind ica ted  i n  e q u a t i o n  (4.S .  1 4 )  

can be carried out a n a l y t  i c a l l y  g i v i n g  

nm nm nm
where (D:~)~, (Di )F, ( E i  )I and (Ei I F  are q i v e n  in 

appendix E. 

When e m ( = )  is c o n s t a n t  (çee f i g u r e  4 . 2 . 4 ) ,  em(r) 

can be represented in the following way 

( 0  otherwise  

F igu re  4 . 2 . 4  Constant t i m e  i n t e r g o i a t i o n  for  p. 
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The s u b s t i t u t i o n  of f-ormula (4.2.18) into 

expression (4 .2 .6 )  gives  

Analytical t i m e  i n t e g r a t i o n  can  now be carried 

o u t  giving 

where F? can  be computed as  shown in appendix E. 

In order to perform n u m e r i c a l l y  the i n t e g r a t i o n s  

ind ica t ed  in expressions ( 4 . 2 . 1 7 )  and ( 4 . 2 . 2 0 )  t h e  r boundary 

must be replaced by an approximated one. L i n e a r  d i s c r e t i z a t i o n  

is used in this w o r k ,  t h a t  is, r is represented  by a series 

o£ straight line seqments, e ( e l e m e n t s )  , each one j o i n i n g  

t w o  consecu t i ve s  nodes af T. lk and n are t h e  l e n g t h  o£ ek-k 

and t h e  unit outward vec tor  normal  to ek respectively ( see  

f i g u r e  4 . 2 . 5 ) .  

When two elements  e and e w i t h  a comrnon node j
P q 

are considered,  and the i n t e r p o l a t i o n  f u n c t ions v .  (Q) and 
l 


v .  ( Q )  are l i n e a r ,  the use o£ n a t u r a l  coordinates  g i v e s
7 

(see figure 4 . 2 . 6 )  

10 o t h e r w i s e  . 
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r 

Figure  4 . 2 . 5  Linear  d i s c r e t i z a t i o n  of the I' boundary. 

F igure  4.2.6 Linear space i n t e r p o l a t i o n  f u n c t i o n s  f o r  u 

and p on the r boundary. 
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When fo rmula  ( 4 .2 .21 )  is considered, express ion 

( 4 . 2 . 1 7 )  iç g iven  as follows 

S i n c e  the i n t e r p o l a t i on  f - u n c t i o n s  are expressed 

i n  terms o£ t h e  komogeneous coordinates 5 ,  a change of 

coordinates  has to be carried out before perforrning the 

i n t e g r at ions  indicated in expression ( 4 .2 .22 )  ; this problem 

is considered i n  appendix F. 

when e r n ( ~ )is c o n s t a n t  and fo rmula  ( 4 .2 .21 )  is 

t a k e n  into c o n s i d e r a t i o n ,  expression ( 4 . 2 . 2 0 )  can be m i t t e n  

When n = m, the coeff  i c i e n t  in expression ( H ~ ~ )
ii I 


( 4 . 2 . 2 2 )  c o n t a i n s  i n t e g r a l s  which must be evaluated in t h e  
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Cauchy p r i n c i p a l  va luc  sense . The £ .unc t ion  be i n g  in teg ra ted  

has  a s i n g u l a r i t y  o£ t h e  type  l / r ,  as shown in expression 

(E.4). However when l i n e a r  d i s c r e t i z a t i o n  is used these 

i n t e g r a l s  disappear due to t h e  orthogonality of Tk and gk 

(see f i g u r e  4 . 2 . 5 )  which makes  aar = O. This problemn 

desetves  specia1 a t t e n t i o n  when i n t e r p o l a t ion f unctions o£ 

order h i g h e r  than l i nea r  are used to approximate the 

geometry of the r boundary.  

When n = m t h e  coef f ic ien t  (G??)~ i n  expressions 

( 4 .2 .22 )  and ( 4 . 2 . 2 3 )  c o n t a i n s  i n t e g r als which have a 

s i n q u l a r i t y  o£ t h e  type In r. These i n t e g r a l s  can be 

computed in the o r d i n a r y  s e n s e  us ing  G a u s s i a n  quadra ture .  

However, a grea te r  precisior. can be obtained if t hese  

i n t e g r a l s  are c arr ied  out a n a l y t i c a l l y  ra ther  than  numer i c a l l y  

as shown in appendix F. 

The rest of the cmf£icients  i n  expressions 

( 4 . 2 . 2 2 )  and (4.2.23) can  be ca lcu la ted  u s i n g  s tandard Gauss 

quadr ature f ormulae. 

Another s i t u a t i o n  to be examined is t h a t  in which 

q . ( Q )  and v .  (Q) are cons tan t ,  i . e .  
3 3 

[O otherwise , 

In t h i s  case a node j can be considered as belonging t o  a 

set of discrete points Q on the r boundary, j=I,,..,J
j 

where each Q is placed at the middle of an e l e m e n t  e 
j j 

as shown i n  f - i g u r e  4 . 2 . 7 .  
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Figure  4 . 2 . 7  	 P o s i t i o n  of nodes when c o n s t a n t  i n t e r p o l a t i o n  

f u n c t i o n s  ri and V are used.  
j j 

When $ m ( - r )  and o"(T) are l i n e a r  the Eollowing 

expression can be w i t t e n  

nm 	 nrn(G. . ) .  = -
1 1 cAt I 

nrn 2 nrn'GijlF = - 	 l F d T jI
cAt 


It should  be recogn ized  that in t h i s  case C (Si) is always 

1 / 2 .  When em(í) is c o n s t a n t ,  (G:;) can  beI and ( ~ 2 ; ) ~  
c a l c u l a t d .  from 

78



Because of the c a u s a l i t y  property a s i t u a t i o n  ex i s t s ,  

in w h i c h  it is necessary to c a r r y  o u t  n u m e r i c a l  i n t e g r a t i o n s  

of functions which are nu11 over part of an e l e m e n t  . In 

t h i s  case it becarne obvious that greater precision could be 

obtained if such i n t e g r a t i o n s  were performed from j to k' 

i n s t e a d  of from j to k as depicted in f i g u r e  4.2.8.  

- Integrotion sense 

Figure 4 . 2 . 8  In tegra t ion  over par t  of an e l ement .  

The fundamental solution of the problem under 

consideration (see equation ( 3 . 6 . 9 )  ) suqgests that ,the 

number of Gauss points can be gradually reduced as (t--r) 

gets bigger. This procedure was used i n  the numer ica l  

ana lys i s  carried o u t  i n  t h i s  research, in order to save 

computer t i m e  . 

4 .2 .2  Domain I n t e g r a l s  - The domain contr ibutions due to 

initial c o n d i t i o n s  can be ca lcu la ted  from expression ( 4 . 2 . 7 )  

which  can be w r i t t e n  as 
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*n
where uoi - uo(q,tn:S.)I and B:: = Bo(q,t,;si). 

In order to carry out t h e  i n t e g r a t i o n s  i nd i ca t ed  

in expression ( 4 .2 .27 )  the domain D is d i v i d e d  i n t o  L 

t r i a n g u l a r  subdomains, O L  ( c e l l s ) ,  as shown in f igure  4 . 2 . 9 .  

Then the expres s ion  ( 4 . 2 - 2 7 )  can be w r i t t e n  as 

F i g u r e  4.2.9  Discretization of the domain R i n t o  t r i a n g u l a r  

c e l l s .  
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The position of a point  q i n s i d e  a c e l l  c a n  k 

more c o n v e n i e n t l y  d e f  ined by tr i angu la r  coordina tes  { I  3 ), 

where A I ,  A2 and A3 are sespect ive ly  the areas of the 

1 1 1tr i a n q l e s  01, O2 and O j  d e p i c t e d  in f i g u r e  4.2.10,  and 

A = A +A +A is t h e  area of t h e  c e l l  O1. It would have1 2 3 

been more c o n s i s t e n t  , regarding notation, to have used 

1 1ui, A', and Ai, when these parameters refer to the c e l l  O1. 

However in ocder to avoid having an excessive number o£ 

i n d i c e s ,  I will k used only when c o n f u s i o n  is l i k e l y .  

F i g u r e  4 . 2 . 1 0  Areas for  the definition of t r i a n g u l a r  

coordinates .  
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When uo and v. are l i n e a r l y  in t e rpo la ted  i n s i d e  

each c e l l  the following expression can k w r i t t e n  

where uoi and vai are r e s p e c t i v e l y  i n i t i a l  d isplacement  
a u* 

and initial v e l o c i t y  at a node i of the c e l l  O1. ã-; 
u 

is 

alço required and c a n  be c a l c u l a t e d  f r o m  expression 

T r i a n g u l a r  coordinates can be re lated to 

r e c t a n g u l a r  coordinates  in t h e  fol lowing way 

where 


a, = x: - X1B 

ba -- x Z13 - x 2  

B Y  Y B2 ~ :  = xlx2-x1x2 

1A = - ( b a - b a )  ,2 1 2  2 1  

In expression ( 4 . 2 . 3 3 )  a = 1,2,3 f o r  B = 2,3,1 and y = 3,1,2. 

Consider i n g  a sys t em o£ polar coord i n a t e s  (r,0 )  

with or igin at the source p o i n t  Si as depicted in f i g u r e  

4.2. 'f 1 ,  expression ( 4 .2 .32 )  becomes (36) 
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where 


Figure 4 .2 .11  Polar  coordinates based at t h e  source p o i n t  Si. 

Taking formulas (4.2.30), ( 4 .2 .31 )  and ( 4 . 2 . 3 4 1  i n t o  

cons idera t ion ,  uo' v. and auo/ar can be expressed as 

In teg ra t ion  over a c e l l  can  now be performed 

u s i n g  polar  coord ina tes .  In this work such i n t eg r a l s  are 

obtained as a sum of three i n t e g r a l s  over the domains E
1 '  

E s  and. E3  depicted in f i g u r e  4.2.12.  Therefore,  when 

formula ( 4 . 2 . 3 6 )  is s u b s t i t u t e d  into expression ( 4 . 2 . 2 8 )  
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the l a t t e r  becomes 

where voa and uoa represent respectively the  v a l u e s  of v 
O 


and u at a node a of the c e l l  01, and 
O 


I n  exp res s ion  ( 4 . 2 . 3 8 )  , t = 1,2,3 for u = 2,3,1 and 

[r: ( e )  when rti ( 8 )  <ctn 

when rti ( 8 ) > c t ,  , 

i
and r t ( 8 ) r B t r  0 and BV are shown in f i g u r e  4.2.13.  

Expression (4.2.38) can now be i n t e g r a t e d  

a n a l y t i c a l l y  w i t h  respect to r ,  giving 
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Figure 4.2 .12  Domains uçed to in tegra te  over a c e l l .  

F i g u r e  4 . 2 . 2  3 De£ i n i t i o n s  with ce l l  i n t e g r a t i o n  purpose . 
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where 

In teg ra t ion  w i t h  respect to 0 can  be car r ied  o u t  

using one d i m n s i o n a l  Gaussian quad ra tu r e .  This can be done 

by simply interchanginq t h e  var iable  e as follows 

where 6 is de£ i n e d  on the i n t e r v a l  -1 , I  .C 1 
If the s p a t i a l  distribution o£ source d e n s i t y  can  

be represented by a n i r a c  d e l t a  f u n c t i o n ,  i . e .  

y ( q r í )  = f ( ~ )6 ( q - ~ )  ( 4 . 2 . 4 3 )  

the i n t e g r a t i o n  over fi shown in expression ( 4 . 2 . 8 )  can be 

carried o u t  a n a l y t i c a l l y  giving 

When f ( T )  is l i n e a r l y  i n t e r p o l a t e d  over the t i m e  

t he  following expression can be w i t t e n  
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where o r n ( ~ )is given  by expression ( 4 . 2 . 1 2 )  and fm = f (t,) 

Then, express ion  ( 4 . 2 . 4 4 )  can  be w r i t t e n  as 

where 

and 

Ana ly t i ca l  i n t e g r a t i o n  of expre s s ion  ( 4 . 2 . 4 7 )  g i v e s  

where ( ~ 7 ~ ) ;and ( ~ 2 ~ ) ~can be computed f r o m  the expres s ions
F 

nm
g i v e n  in appendix E to c a l c u l a t e  (E")~ and (Ei )F by 

m a k i n g  r=r r is given by
C' C 

When the source density is d i s t r i b u t e d  over fi, 

volume and t i m e  i n t e g r a t i o n s  can e a s i l y  k carried out 

u s i n g  time and domain i n t e r p o l a t i o n  func t i ons  r espec t ive ly  

which appear in expressions ( 4 . 2 . 1 2 )  and ( 4 . 2 . 3 0 ) .  T h i s  

case will not be discussed here. 
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4 . 2 . 3  Double Nodes - A v e r y  conunon situation i n  wave 

propagation pr oblems concerns p being discontinuous on the 

boundary. A conven i en t  way of a n a l y s i n g  these sor t s  of 

problem is that in which t w o  d i s t i n c t  v a l u e s  o£ 

t r a c t i onç ,  pr and p l ,  and two v a l u e s  of displacements 

u r and u1 are considered on t h e  neighbourhood of each point 

where a d i s c o n t i n u i t y  can  occur (see f i g u r e  4 . 2 . 1 4 ) .  So,  

for each of these p o i n t s  t w o  extra boundary unknowns are 

in t roduced  in the a n a l y s i s .  When, pr and p'. or ur(u1) 

and p 1 ( pr
) are prescr ibed  t h e  c o n t i n u i t y  condition for  

displacements , namely 

g i v e s  the extra equation required.  When constant e l e m e n t s  

are u s e d .  this problem is naturally considered by the 

discontinuous nature of these e lements .  However , when 

l i n e a r  or higher order elements are used special 

cons ide ra t ions  are r equ i r ed .  The sys tem of equat ions g iven  

by express ion  ( 4 . 2 . 4 )  can s t i l l  be used and the cond i t i on  

( 4 . 2 . 5 1 )  can  be i n t roduced  using "double nodes", i.@. two 

d i f f e r e h t  nodes being placed at poin t s  where  p can  be 

discontinuous. An e x t e n s i v e  s t u d y  on this subjec t  can  be 

found in t h e  referentes {99-101). 
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Figure 4 . 2 . 1 4  Discontinuous p on the r boundary. 

A more involved situation is that in which p' and 

pr are d i f f e r e n t  from each o the r  in the neighbourhood of 

a p o i n t  where t h e  p o t e n t i a l  i s  prescr ibed .  The approach to 

be followed in t h i s  case can be found i n  referentes ( 3 7  and 

100) .  

I n  q u i t e  a number o£ s i t u a t i o n s  it is n o t  possible 

to determine a pr iar i when and where tr a c t i o n s  are 

discontinuous. In t h i s  case the mean va lue  o£ the unknowns 

is to be expected from t h e  numerical a n a l y s i s .  

Another methbd of d e a l i n g  w i t h  d i s c o n t i n u i t ies is 

by uç ing  discontinuous elements ( 1 02  and 1031.  The 

discontinuity is  t h e n  avoided because as shown in f i g u r e  

4 .2 .15  t h e  nodcs of the d i s c o n t i n u o u s  elements are placed 

i n s i d e  them, rather than on t h e i r  ex t remi t i e s .  It shou ld  

be recognized that this procedure can  alço be used when 

t i m e  d i s c o n t i n u i t i e s  occur in a problem. 
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Figure 4.2.15 Discontinuous l i n e a r  e lements .  

4 . 3  	 Examples - Scaiar  Wave Equa t ion  

If it is des i red  to find boundary unknowns at a 

t i m e  t,, it is c o n v e n i e n t  to write equat ion  ( 4 . 2 . 4 )  in the 

following way (çummation convention does not apply) 

Equation 	(4.3.1) can also be w i t t e n  as 

where -H and -G are square matr ices of order (JxJ) 

and u, e and B are vectors .-

If t h e  boundary conditions a t  t h e  t i m e  tn a r e  

considered and t h e  system of equa t i ons  t h a t  a r i ses  is reordered 

expression ( 4 . 3 . 2 )  can be w r i t t e n  as 
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where the vector y is formed by unknownç un and pn af
j j 

boundary nodes. 

Within t h e  examples analysed i n  this chapter the 

boundary c o n d i t i o n s  at boundary nodes are always of t h e  

same type, i . c .  a node at which u (or  p )  is  i n i t i a l l y  

prescribed will o n l y  have prescribed u (or p )  until t h e  end  

o£ the t r a n s i e n t  a n a l y s i s .  Consequently, due to t h e  t i m e  

translation prope r ty  (see expression (4 .2 .1  1) ) , A requiresh 

to be i nve r t ed  o n l y  once. Gauss e l i m i n a t i o n  i s  used i n  t h i s  

work t o  obtain the i n v e r s e  o£ A. 

I n  the examples discussed here t h e  numer ica l  

i n t e g r a t i o n s  mntioned  previously i n  sec t ion 4 . 2  w e r e  c arr i e d  

out using a m a x i m u m  af ten Gauss points. 

The choice of c e l l  discretization to be used 


when s o l v i n g  a problem is fairly simple &cause uo, v 

O 


and y are known functions. However boundary  d i s c r e t i z a t i o n  

and time division depend on what the problem under cons idera t ion  

is like. For t h i s  r e a s o n ,  in many problems, more than  one 

n u m e r i c a l  a n a l y s i s  has t o  be c a r r i e d  o u t  i n  which the 

boundary discretization and the t i m e  d i v i s i o n  are s u c c e s s i v e l y  

r e f i n e d .  The  q u a n t i t y  of work xequired is cons ide rab ly  

reduced as experience is  gained i n  the method adopted. The 

observat ion of certain physical character istics of the 

problem can also be of great he lp .  For i n s t a n c e  when 

s t u d y i n g  wave propagation care should  be taken on the choice 

of time i n t e r v a l s  and boundary d i s c r e t i z a t i o n  in order t o  

avoid c o n t r a d i c t i n g  the causality p r o p e r t y  too  f ar, t h a t  is, 

i n  a t i m e  i n t e r v a l ,  waves should n o t  be allowed to t r ave1  
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k t w e e n  nodes f a r  f - r o m  each other. T h e r e  are a l so  cer t a i n  

p r e c a u t i o n s  w h i c h  must be taken when choos ing  t h e  parameter 

i3 given by 

It is q u i t e  commonly regarded that t h e r e  exist s t r i c t  r u l e s  

c o n c e r n i n g  t h e  choice o£ a s i m i l a r  parameter in f i n i t e  

d i f ferences  and f i n i t e  elernents; which i£ n o t  followed can  

r e s u l t  in a comple te ly  i n v a l i d  a n a l y s i s .  In boundary elements 

c o n c l u s i v e  analytica 1  s t u d i e s  r ega rd inq  the choice  of B have 

not y e t  been completed, c o n s e q u e n t l y  t h e  d i s c u s s i o n  based 

on numerical  experiments presented i n  t h e  examples can  be 

very  helpfu l .  

The n u m e r i c a l  procedure discussed  p r e v i o u s l y  in 

this chap te r  was conver ted  into FORTRAN and implemented on 

an ICL2970 computer. The computer  coãe w a s  used to a n a l y s e  

a number of exarnples which will be presented next. 

4 . 3 . 1  One-Dimensional Rod  Under a Heaviside Type F o r c i n g  

F u n c t i o n  - The r e s u l t s  ob ta ined  from u s i n g  the two-dimensional 

boundary e l e m e n t  computer code were compared w i t h  the  

a n a l y t i c a l  results for  a one-dimensional r& under a 

Heaviside type f orcinq f unc tion. The boundar y e l e m e n t  solut i o n  

considered a r ec t angu la r  domain w i t h  sides of l e n g t k  a and 

b (b = a/2)  as depicted in f i g u r e  4 . 3 . 1 .  The u displacernents 

were assumed t o  be zero a t  x , = a  and t h e i r  normal  derivative 

p were a l so  t a k e n  as nu11 a t  x 2 = 0  and x 
2
=b for  any time 't' . 

At xl=O and t = O  a load Ep was suddenly appl ied and kept 

cons tan t  until t h e  end of the a n a l y s i s  ( E  fs the Youngts 

modulus). Due to the topology and boundary conditions the 
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problem is a c t u a l l y  one-dimensional and i t s  analytical 

s o l u t i o n  can be found elsewhere ( 1 0 4 ) .  

Thtee d i f f e r e n t  combinations of i n t e r p o l a t i o n  

f u n c t i o n s  were used in the ana lys i s  as g i v e n  in t ab le  4 . 3 . 1 .  

The boundary was d i s c r e t i z e d  i n t o  t w e n t y  four 

c o n s t a n t  and l i n e a r  e lements  as shown in figure 4.3.2, 

double  noães were used at the corners for the latter model. 

Combination 1 w a s  tried w i t h  = .6 and gave 

good r e s u l t s  f o r  t h e  displacements u (the degree of accuracy 

nas the same as combination 2 ) .  The numerical v a l u e s  o£ 

p ,  however, osc i l l a ted  around t h e  analytical s o l u t i o n ,  

displaying t h e  onset o£ instability. T h i s  u n s t a b l e  

behaviour of p can  be avoided in t h i s  pa r t i cu l a r  a n a l y s i s  

by r e p l a c i n g  the  jump-of t h e  f o r c i n g  f u n c t i o n  PH( t -O)  by 

a steep slope. Because of t h e  o sc i l l a t i onç  that can occur  

on the numerical  v a l u e s  of p ,  it was decided n o t  to use 

combination 1 until f u r t h e r  s tudies  have been accomplished. 

Combinations 2 and 3 were then compared and it 

was found that for the same numher of boundary elements anã 

the same time d i v i s i o n ,  better r e s u l t s  were obta ined  f o r  

l i n e a r  q .  (Q) and v .  ( Q )  (combination 2)  than f o r  c o n s t a n t  
I 7 

q . ( Q )  and v . ( Q )  (combination 3). As the computing time 
7 7 

is much the same for  both cases it was concluded t h a t  

combination two is more e f f i c i e n t  than combination three. 

Therefore, unless o t h e r w i s e  s t a t e d, a11 the boundary 

element method (B.E.M.) r e s u l t s  presented from now on are 

based on combination 2. 
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Combination Interpolation function 

Linear Linear Linear 
Linear Linear Constant 
Constant Linear Constant 

Table 4.3.1 Combination of i n t e r p o l a t i o n  fu n c t i o n s .  

Linear 3, (0)and v, ( Q )  

Constont 3, (a)ond V j  te) 

Figure  4 . 3 . 2  Boundary d i s c r e t i z a t i o n  for one-dimens i o n a l  rod . 
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where u '  and p '  refer  to t he  problem s t u d i e d  i n  s e c t i o n  4 . 3 . 1 .  

T w e ~ t yfour  l i n e a r  e lements  were used to 

d i s c r e t i z e  the boundary and R waç çubdivided i n t o  f o u r
O 


t r i a n g u l a  c e l l s  a s  depic ted  i n  f i g u r e  4 . 3 . 1 2 .  The t i m e  

s t e p ç  were s u c h  t h a t  6 = 0 . 6 .  

F i g u r e  4 . 3 .  '1 1 	 Geornetry def i n i t i o n s  , bouridary and init ia1 

c o n d i t i o n s  for one-dirnensional r o d ,  

Figure  4 . 3 . 1 2  	 Domain and boundary  d i s c r e t i z a t i o n  for one-

dimens iona l  rod under  prescr ibed initial 

c o n d i t i o n s . 



Displacernents at points (O,b/2 )  ,(3a/16,b/2)  , 

(3a/4 , b / 2 )  and t r a c t i o n  at p o i n t  (a,b/2) are p r e s e n t e d  in 

f i g u r e s  4 . 3 . 7 3  and 4 . 3 . 1 4  r e s p e c t i v e l y .  The accuracy of 

t h e  r e s u l t s  is similar to t h a t  obtained in the prev ious  

problem. 

Analytical 

.--*****BEM fw P =0.6 

ct 
Figure4.3.13 Displacement s  a t  boundary point A(O, 6/21 and intemal 
pointç I(3a116,b/2),HI3a/4,b/2) for onedimensional rod under 
prescribed initial conditions. q j ( ~ ) ,  are linear and flrntt)iij@),@m(tl 
is constant. 

Analyticol 
.......BEM for P =0.6 

ct 

Figure4.3,14Normal derivative of displacement at point Ota, b12) 

for one-dimensional rod under prescribed initial conditions. qj{0), 

~ j ( Q l ,P ( t l are linear and ernlt)i s  constant. 




4 . 3 . 3  Square Membrane Under Prescribed Initial V e l o c i t y  -
The s u b j e c t  of this i n v e ç t i g a t i o n  is the t r a n s v e r s e  motion 

of a square membrane  w i t h  i n i t i a l  v e l o c i t y  v. = c prescr ibed 

aver the domain no dep ic ted in f i g u r e  4 . 3 . 1 5  and zero 

displacements  prescribed over a11 the boundary.  

T h e  boundary was d i s c r e t i z e d  into t i - t i r ty  two 

elements and R. was d iv ided  into f o u r  c e l l s  as showr, in 

f i g u r e  4 . 3 . 1 6 .  A n a l y t i c a l  (see  appendix G )  and boundary 

e l e m e n t  method results for d i s p l a c e m e n t s  at p o i n t  (a /2  ,a/2) 

and t h e  normal d e r i v a t i v e  o£ d i sp lacenen t s  a t  p o i n t  (a,a/2) 

were conpared. 

The v a l u e s  of u and p for B = 0.6 are p l o t t e d  i n  

f i g u r e s  4 . 3 . 1 7  and 4 . 3 . 1 8  r e s p e c t i v e l y .  Al though the 

agreement for diss lacements  is reasonable  , it w a s  found 

t h a t  a more r e f i n e d  t i m e  division was needed tc represent  

p more a c c u r a t e l y . Another  boundary e l e m e n t  analysis was 

t h e n  carr ied out, with 6 = 0 . 2  and t h e  r e s u l t s  ob ta ined  

for p, plotted in f i g u r e  4.3.19,  show a better  agreement. 

A final a n a l y s i s  nas  performed, in which t h e  bour,dary w a s  

d i s c r e t i z e d  i n t o  sixty f o u r  rather t h a n  t h i r t y  t w o  e l e m e n t s ,  

and the  va lue  o£ 6 w a s  t a k e n  as 0.13. The r e s u l t s  ( s e e  

f i g u r e  4.3.20) were on ly  s l i g h t l y  better than those  fo r  the 

prev ious  c a s e ,  a p p a r e n t l y  because unlike the rod a n a l y s i s ,  

B < O . 6  did n o t  in t roduce  any great amount o£ nolse into t h e  

nurner i c a l  resul t s . 



Figure  4 . 3 . 1 5  Geometry d e f  i n i t i o n ,  boundary and  i n i t i a l  

c o n d i t i o n s  for membrane a n a l y s i s .  

F i g u r e  4 . 3 . 1 6  Membrane d i s c r e t i z e d  into 3.2 elements and 

f o u r  c e l l s .  



0 0 0 0 0  BEM for P ~ 0 . 6  
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-0.06-
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0.2a 0 6 a  a 140  1.80 2 2~ 

ct 

Figure4.3-IIDisplacement at  point A(a/2, a12). 32 boundary elements. 

-Analytico l 

ooooBEM for P.0.6 

0 . 2 ~  0 . 6 ~  u 1.40 1,Ba 2 . 2 0  
ct 

Figure 4.3.1BNormaI derivative of displacement a t  point 6 (a, alZ1. 
32 boundary elements. 



-Analytical 

o 0000  BEM for íj~ 0 . 2  

Figrrre4.1.19 Normal derivative of displacement a t  point B{a,a/2). 
32 boundary elements, 

Figore4.3.20~ormalderivative of displacement a t  point B (a, 312). 
64 boundary elements. 



CHAPTER 5 

BOUNDARY INTEGRAL EQUATIONS FOR TRANSIZNT 


ELASTODYNAMICS 


5 .1  In t roduc t ion  

I n  this chap t e r  t h e  d i s c ~ s s i o np r e s e n t e d  in 

chapte r  three concerninq the s c a l a r  wave equation will be 

extended to elastodynamics . 

L i n e a r  homogeneous i s o t r o p i c  e l a s t o d y n a m i c s  is 

governed by Navier's e q u a t i o n s  (see exp re sç ion  ( 2 . 2 . 1 8 ) )  

which  are f r e q u e n t l y  presented in the literature in the 

following a l t e r n a t i v e  form 

.. 
( c : - c ~ ) u ~ , ~ ~+ c2us j,kk + f  

j 
= u

j 
( 5 . 1 . 7 ;  

where c and c s  are r e s p e c t i v e l y  t h e  speed of propaqa t ion
d 

of d i l a t a t i o n a l  and equivcluminal body waves and 

As discussed  in sect ion  2 . 2  initial c o n d i t i o n s  uok and vok 

(k=1,2,3) are specif ied at a11 p o i n t s  i n s i d e  the domain 

O£ the problem. In addition uk and pk m u s t  s a t i s f y  prescribed 
- -

boundary ccnditions uk = uk on I', , and pk = pk on r2 

( r= r l -+ r2 ). 

Equivoluminal and d i l a t a t i o n a l  wave propagat ion 

speeds  can a l ç o  be used to express stresses in t e r m s  of 

displacernents.  Tn this case equa t ion  ( 2 . 2 . 2 '  ) reads 



An i n t e g r a l  r ep resen ta t ion  for elas todyf iamics  

can be obtained f o l l o w i n g  a procedure s imi lar  t o  t h a t  

described i n  s e c t i o n  3.5 for t h e  s ca l a r  wave equation,  

however , Graf fi's elas todynamic r ec ip roca1  theorem will be 

employed r a t h e r  than w e i q h t e l  residues. From t h i s ,  a very 

u s e f u l  theorem which  has commonly been used in e l a s t o d y n a m i c ç  

will alço be i l l u s t r a t e d .  

5 . 2  Elastodynarnic Fundamental  Solutions 

The fundamental s i n g u l a r  s o l u t i o n  o£ e las todynamics  

which is u s e d  in t h i s  work is the  f u n c t i o n  u* which s a t i s f i e s
i k  

t he  followinq equa t ions  

in an unbounded domain R * ,  which is f r ee  from a n y  imposed 

i n i t i a l  c o n d i t i o n .  The  body forces i n  equa t ions  ( 5 . 2 . 1  ) 

correspond to a concent ra ted  force  in the  x i - d i r e c t i o n  which 

is an impulse at t= - r  Located at q=s. 

In three dimensions, the s o l u t i u n  o£ e q u a t i o n s  

( 5 . 2 . 1 )  can be w r i t t e n  as follows ( 9 )  

where 


ri = x . (q)- x ,( s )  . 
1 1 




It shou ld  be recoynized t h a t  e q u i v a l e n t  forms for uTk other 

than t h a t  descríbed by expression ( 5 . 2 . 2 )  are f r e q u e n t l y  tc 

be f o ~ n di n  t h e  l i t e r a t u r e  {9 ,80,81 ,841.  

E q u a t i o n s  ( 2 . 2 . 4 1 ,  ( 5 . 1 . 3 )  and : 5 . 2 . 2 )  can  be used 

to ob ta in  the fundamental t r a c t i o n  g i v e n  by 1 9 )  

where  
& . . r k + b i k r
17 


- r3 

The two-dimensional fundamenta l  s o l u t i o n  of 

e l a s t o d y n a m i c s  can be obtained by following a procedure 

similar  to that g i v e n  in s e c t i o n  3 ,6  f o r  t h e  scalar  wave 

e q u ~ t i o n .  In this case, d e s c e n d i n g  from three d i m e n s i o n s  

g i v e s  ( f o r  d e t a i l s  see reference  1 3 )  ) 

http:(2.2.41


where  

Equat ions  ( 5 . 2 . 4 )  and ( 5 . 2 . 6 )  can be appl ied to 

d e r i v e  an expression f o r  the two-dimensional fundamental 

t r a c t i o n ,  which is given by (see appendix F) 



where 

Aik = ãnG(20nkr ,i'%k ar + n.r 
1 ,k 


The fundamenta l  s o l u t i o n s  s t u d i e d  in t h i s  s e c t i o n  

have the following p r o p e r t i e s  (9) 

(i) causality 

~;~(q.t:s,r) = O whenever c s (t-r)<l q - s /  

(ii) r e c i p r a c i t y  

utk(qrt;siT) = uTk(s#-T;q#-t) 

(iii) t i m e  t r a n s l a t i o n  
-

utk(qrt+t, is , ~ + t , )- U ? ~ ( ~ , ~ : S , T )  + ( 5 . 2 . 1 2 )  

It should be noted t h a t  the p r o p e r t i e s  descr ibed  

in (i), (ii) and ( i i i)  above are s imi lar  to t h e  ones s t u d i e d  

p r e v i o u s l y  in s e c t i o n  3 . 4  f o r  the scalar wave e q u a t i o n .  

The symmetry of the tensors  g i v e n  by e q u a t i o n s  ( 5 . 2 . 2 )  

and ( 5 . 2 . 6 )  i m p l i e s  t h a t  19)  t h e  k-component of t he  d i sp lacement  



at q due to the i-component of the concent r ated force  at s 

is e q u a l  to the f component  o£ t h e  displacenient at q due to 

the k-component of the c o n c e n t r a t e d  force at s ,  i . e .  

5 . 3  	 T i m e  Domain Elas todynamic  Bounda ry  In tegr a1 

Represen ta t  i o n  

The reciproca1 t h e a r e m  f o r  elastodynamics, to be 

der ived  in t b i s  s e c t i o n ,  e f f e c t i v e l y  r e l a t e s  two 

elastodynamic s t a t e s  whose displacement  f ields will be 

denoted by uk and u;. These are def ined over r e g i o n s  

n+r and E X + T *  r e s p e c t i v e l y  so t h a t  S1* c o n t a i n s  R+T as 

depicted in f i g u r e  3 . 5 . 2 .  The bodies enclosed by r and r*  

have the same p h y s i c a l  p roper t i es ,  and uk and u$ s a t i s f y  

the e l a s t o d y n a m i c  e q u i l i h r i u r n  equat ions,  i.e . 

where 


Using Hooke ' s l a w  the followinq i n t e q r a l  s tatement 

c a n  e a s i l y  be i n f e r x e d  



I£ t h e  divergente theorem (çee e q u a t i o n  ( A .  2 ) )  is 

appl ied  to both sides of e q u a t i o n  ( 5 . 3 . 3 )  and equationç 

( 2 . 2 . 8 )  and ( 5 . 3 . 7 )  a r e  used,  the following s t a t e m e n t  is 

i n f erred 

E g u a t i o n  ( 5 . 3 . 4 )  carresponds to Betti's second rec ip roca1  

work theorem f o r  t w o  d i s t i n c t  e l a s t o s t a t i c  s t a t e s  with 

body forces !3 and B * .  

When e q u a t i o n  ( 5 . 3 . 4 )  is in tegra ted  from O to t, 

and expression ( 5 . 3 . 2 )  is taken i n t o  c o n s i d e r a t i o n ,  the 

f o l l o w i n g  e q u a t i o n  is obtained 

InJhen expression ( A . 1)  is considered it is then poss ib le  to 

w r  i t e  



where 

and 

When expression ( 5 . 3 . 6 )  is s u b s t i t u t e d  into 

equa t ion  ( 5 . 3 . 5 1  , the r ec ip roca1  theorem of elastodynamics 

is ob ta ined ,  i . e .  

If one of t h e  elastodynamic s t a t e s  is taken a t  

a time t1=t-T t h e  reciproca1 theorem g i v e n  by equa t ion  

(5.3.9) can be c a s t  into Graffils theorem, i n  the fo rm in 

which it is presented in referentes ( 9  and 101 ,  

In order to o b t a i n  a boundary i n t e g r a l  e q u a t i o n  for 

the problern be ing  s t u d i e d ,  one of t h e  e las todynamic  s t a t e s  

in expres s ion  (5.3.9) will be considered to be t h a t  qoverned 

by e q u a t i o n  ( 5 . 2 . 1 )  . I n  t h i s  c a s e ,  due  to.the r e c i p r o c i t y  

pr ope r ty  



a2uik 
-

a 2 u;, 

TE-2- a ~ 2 

and as a r e s u l t  of t h e  c a u s a l i t y  p r o p e r t y  

Then, if the t ine  i n t e g r a t i o n  limits i n d i c a t e d  Ln e q u a t i o n  

( 5 . 3 . 9 )  are taken to be zero and t 
i" 

(t' = E+O)t + ~ ,  


t h e  following e q u a t ion  is obtained 

l:'\;kdik 6 (q -s )  6 ( t - ~ ) d R d r+ 

Tak ing  a c c o u n t  o£ t h e  Dirac d e l t a  p roper t i e s  

t h e  fo l lowing  integral s t a t e m e n t  is then ob ta ined  



E q u a t i o n  ( 5 . 3 . 1 4 )  g i v e s  the u,-component of the 
A 


disp lacement ,  at an  i n t e r n a 1  p o i n t  s ,  as a f u n c t i o n  of 

boundary t r a c t i o n s  and disp lacements ,  initial c o n d i t i o n s  

and body forces .  Cfhen s+S a procedure similar to that 

discussed in chapter 3 ,  for the scalar wave e q u a t i o n ,  can 

be fo l lowed g i v i n g  



where 

c (S) = i 6  .ij 2 i] 

whenever the r boundary is smooth. It should be recoqnized  

t h a t  the integrais i n d i c a t e d  in e q u a t i o n  ( 5 . 3 . 1 5 )  are to be 

c a l c u l a t e d  in t h e  Cauchy p r i n c i p a l  va lue  sense. 

Equa t ion  ( 5 . 3 . 1 5 )  can  also be used when the 

source p o i n t  is o u t s i d e  R+r. In t h i s  case c must be
i 3  

regarded as b i n g  e q u a l  to zero. 

Add i t i ona l  i n f o r m a t i o n  on how e q u a t i o n  ( 5 . 3 . 1 5 )  

c a n  be obta ined  frorn e q u a t i o n  (5.3.14) , f o r  both, t h r e e  

and two d í m e n s i o n s ,  can be found  in { 9 , 8 0 , 8 1 , 8 4 j .  In t h e s e  

references, d i s c u s s i o n s  conce rn ing  express ion  ( 5 . 3 . 1 6 )  are 

a l s o  cons idered  . 

In order to implement a numer i c a l  time-stepping 

algorithm to solve the three-dimens Tonal boundar y i n t e g r a l  

equation a n a l y t ica1 integrat i o n s  must be per f ormed fi r st , 

to e l i m i n a t e  t h e  Dirac-delta functions and its d e r i v a t i v e s  

t h a t  appear in equations (5.2.2) and ( 5 . 2 . 5 ) .  This matter 

1s discussed  in references I 8 0  and 81  where  two-dimensiunal  

e las todynamic  pr oblerns are analysed using three-dimensional  

fundamenta l  sclutions. f n  t h e s e  papers the two-dimensional 

problem is considered to Jx a c y l i n d e r ,  whose a x i s  has 

i n f i n i t e  l e n g t h  and is p a r a l l e l  to the x j - d i r e c t i o n ,  as 

explained in s e c t i o n  3.6. As t h i s  approach is e s s e n t i a l l y  

three-d imens iona l ,  an e x t r a  i n t e g r a t i o n  w i t h  respec t to 

the coordinate  x 3 is r e q u i r e d .  

In the p r e s e n t  i n v e s t i g a t i o r i ,  two-dimensional  

e l a s t o d y n a m i c  problems are analysed u s i n g  a two-dimensional  



boundary i n t e g r a l  c q u a t i o n ,  i . e . ,  t h e  fundamental  solution 

considred is t h a t  g i v e n  by e q u a t i o n  ( 5 . 2 . 6 ) .  In order to 

implement  a g e n e r a l  two-dimensional numerical  time-steppinq 

a l g o r i t h m ,  some a d d i t i o n a l  t ransformat ions  must f i r s t  be 

carried o u t  in order to e l i m i n a t e  the d e r i v a t i v e s  of 

Heaviside f u n c t i o n s  that appear in e q u a t i o n  ( 5 . 2 . 8 ) .  T h i s  

is d i s c u s s e d  i n  t h e  next s e c t i o n .  

5 . 4  	 A d d i t i o n a l  T r a n s f  ormations to t h e  Two-Dimensional 

Boundary I n t e g r a l  E q u a t i o n  of E las todynamics  

In t h e  numer i c a l  a n a l y ç i s  concern i n g  two-dimensional 

e las todynamics  , i n i t i a l  conditions and body f o r c e s  will not 

be cons idered .  Consequently when u*ik and pTk given by 

expressions ( 5 - 2 . 6  1 and ( 5 .2 .8 )  r e s p e c t i v e l y ,  a r e  substituted 

into e q u a t i o n  ( 5 . 3 . 1 5 )  and nanipulations s imi lar  t o  t hose  

descr iked  in s e c t i o n  3 . 7  are carr ied o u t  t h e  f o l l o w i n g  

expression is obtained 



where A i k ,  and Dik are g i v e n  by expression ( 5 . 2 . 9 ) ,
B i k  

and 


0 ,  = O1 ( Q , ~ ; s . T )  = 3cdt'rz-2cd(t1)' -r3 

M2, N2 and O2 can be r e s p e c t i v e l y  oòtained from L,, M , ,  

N1 and 0,  r ep lac ing  cd by cS i n  expression (5.4.3). 

Ir. i tems (i) and (ii) descr ibed below d e t a i l s  

are g i v e n  of t h e  modif i ca t ions  required to o b t a i n  e q u a t i o n  

( 5 . 4 . 1  ) from expression ( 5 . 3 . 1 5 )  . 

(i) A p p l y i n g  the same procedure used in i t e m  (i) of sec t ion 

3.7 it is possible to write 



where 

LO2 L2(Q,t;S,01 (5.4.5) 

The f i r s t  t e w m  on t h e  r igh t -hand  s i d e  of expression 

( 5 . 4 . 4 )  w a s  regarded as k i n g  equal  to nu11 &cause non zero 

i n i t i a l  c o n d i t i o n s  have n o t  been considered in the elastodynarnic 

formulation .  

(ii) The r e m a i n i n g  term in equat ion ( 5 . 3 .  i S )  that requires 

to be f u r t h e r  manipulated is g i v e n  by 

If expression ( A .  1) is used, i n t e g r a t i o n  by p a r t s  with 

respect to time g i v e s  



I n  v i e w  o£ the c a u s a l i t y  p r o p e r t y  and the f act  that 

the followinç expression r e s u l t s  

where 

NO2 = N 2 ( Q t t ; S r O )  ( 5 . 4 . 1 0 )  

The fi r s t  t e r m  on the r igh t -hand  s i d e  of cxpres s ion  ( 5 . 4 . 9 )  

w a s  not i n c l u d e d  i n  e q u a t i o n  ( 5 . 4 . 1 )  k c a u s e  u was t a k e nok 

as being e q u a l  to zero. 

The ope ra t ions  carxied o u t  in sub-sec t ions  (i) and 

(ii) above r e f e r  to terms in e q u a t i o n  ( 5 . 4 . 7 1  t h a t  accoun t  



f o r  waves which propagate with speed c The term in s ' 

expression ( 5 . 3 . 1 5 )  g i v e n  by 

( 5 . 4 . 7 1 j  

which re fers  to d i l a t a t i o n a l  waves a l ç o  h a s  to u n d e r g o  

a d d i t i o n a l  tr ansf ormations . The f i n a l  express iún  f o r  t h i s  

case can e a s i l y  be obtained i£ cS is replaced by cd in 

e q u a t i o n  ( 5 . 4 . 9 ) .  

A close e x a m i n a t i o n  o£ e q u a t i o n  { S .  4 . 1  } r e v e a l s  

that some i n t e g r a n d s  in t h a t  expression a r e  s i n g u l a r  at the 

wave f r o n t s  of both e q u i v o l u m i n a l  (r = esta) and d i l a t a t i o n a l  

(r = C t') waves, represented by t h e  Greents f u n c t i o n .d 

These singularities are of t h e  same type p r e v i o u s l y  d i scus sed  

in çect ion 3 . 7  f o r  the s c a l a r  wave e q u a t i o n ,  i.e., the 

f u n c t i o n s  be ing i n t e g r a t e d  behave like 

A n  a d d i t i o n a l  d i f f i c u l t y  in t h e  two-dimens ional  

elastodynamic boundary e l e m e n t  formulation is discussed in 

reference ( 8 1 )and r e f e r s  to the s i n g u l a r i t i e s  t h a t  appea r  

when r+O and 

These s i n g u l a r i t ies ,  however , are only apparent  ones and 

disappear  if c o n t r i b u t i o n s  from similar  terms r e f e r r ing to 

e q u i v o l u r n i n a l  and  d i l a t i o n a l  waves are c a l c u l a t e d  together 



i n  exp res s ion  ( 5 . 4 . 1 ) .  The type of m a n i p u l a t i o n s  r e q u i r e d  

will now be discuçsed by consider ing t h e  integr als that 

invo lve  Bik i n  expression ( 5 . 4 . 1 ) .  

When cons idered  a lone BikL2N2 and BikL N, behave 

l i k e  l / r  when r+O, However these s i n g u l a r i t i e s  can e a s i l y  

be e l imina ted  from the i n t e g r a l  equation if it is r e a l i z e d  

t h a t  

Therefore ,  the only s i n g u l a r i t i e s  p r e s e n t  in the n u m e r i c a l  

a n a l y s i s  are those t h a t  occur when r and t' go to zero 

simultaneously . 



CHAPTER 6 

BOUNDARY ELEMENT METHOD FOR TWO-DIXENSZONAL 


TRANSTENT ELASTODYNAMLCS
-

S n t r o d u c t i o n  

A time-stepping s c h ~ m eto s o l v e  e q u a t i o n  ( 5 . 4 . 1 )  

will Se d i s c u s s e d  in this chapter .  The procedure employed 

for two-dimensional t r a n s i e n t  e lastodynamics is s i r n i l a r  to 

t h a t  a l r eady  discussed i n  c h a p t e r  4 concern inq  t h e  çca la r  

wave equation, 

After t h e  bouridary unknowns u i ( S , t )  and pi(S,t) 

have been o b t a i n e d ,  i n t e r n a l  d i sp lacements  ui ( s ,t) c a n  be 

ca lcu la ted  by applying the  i n t e g r a l  e q u a t i o n  t h a t  results 

E r o m  e q u a t i o n  (5.4.1) when S is replaced by  5 and cik[s) 

is made to e q u a l  to 6 i j .  In e l a s t i c i t y  problerns it is 

i m p o r t a n t  t o  compute s t r e s s e s  as w e l l .  The scheme i m p l e m n t e d  

in section 6 . 2  to c a l c u l a t e  i n t e r n a l  s tresses i s  s i m i l a r  Lo 

the simplest one used i n  f i n i t e  e l e m e n t s .  T r i a n g u l a r  ce l lr ,  

are employed and s t r e s s e s  at the i r  c e n t r o i d s  are o b t n i n e d  

by c a r r y i n g  o u t  a e r iva t i ve s  of displacements, which are 

l i n e a r l y  in t e rpo la ted  i n s i d e  each c e l l  as a function o£ 

t he  displacements at the c e l l  nodes. F o l l o w i n q  t h i s  

procedure one avoids  per forming a n a l y t i ca l  der i v a t i v e s  of 

the i n t e g r a l  e q u a k i o n  for i n t e r n a l  displacernents.  

T h i s  a l t e r n a t i v e  procedure however, shou ld  be ~ttemptedin 

f u t u r e  research  because it almost c e r t a i r ~ l yy i e l d s  more 

accurate r e s u l t s .  

~nterpolationf u n c t i o n s  of t h e  t y p e  g i v e n  by 

c q u a t i o n  I ) a r e  a l s o  used to approximate u- and pk in 
K 



equation ( 5 . 4 . 1 ) .  A n a l y t i c a l  t i m e  i n t e g r a t i o n  can also 

c a r r i e d  out, r e s u l t i n g  in expressions which a re  consider ably  

longer t h a n  those prev ious ly der ived when investigating t h e  

scalar  wave e q u a t i o n  ( s e e  chap te r  4 ) .  A c e r t a i n  degree of 

care must be taken when i n t e g r a t i n g  a n a l y t i c a l l y  w i t h  respect 

to t i m e .  If c o n v e n i e n t l y  m a n i p u l a t e d ,  Lhe f i n a l  expressions 

obtained w i l l  have  no s i n g u l a r i t y  at t h e  f r o n t s  c£ t h e  

e q u i v o l u m i n a l  and d i l a t a t i o n a l  waves represented by the 

Green' s f u n c t i o n .  C o n v e n i e n t  operations l i k e  those 

descr ibed by expression ( 5 . 4 . 1 4 )  m u s t  a l s o  be carried o u t  

in order to remove apparen t  s i n g u l a r i t i e s  t h a t  occur when 

O Consequen t ly  t h e  only singularities which  remain occur 

on t h e  first time step, when r+O, and are of the same type 

as those  f o r  two-d imens iona l  e l a s t o s t a t i c s ,  i . e . ,  the 

i n t e g r a n d s  behave l i k e  l/s and Inr on t h e  boundary integrais 

i n v o l v i n g  uk and pk r e s p e c t i v e l y .  

6 .  2 Numerical I~lementation 

As i n  sec t ion 4 . 2 ,  the implernentat ion of a numer i ca l  

scherne to solve e q u a t i o n  ( 5 . 4 . 1  r e q u i r e s  t h e  cons ider ation 

o£ a s e t  o£ discre te  p o i n t s  Q j = 1 ,  ...J, on the r boundary
j '  

and a s e t  of values  of t i m e  t n=f ,...,N. uk(Q,t), vk(Qtt)ri' 


and pk(Q,t) can 5e appraximated using the same set of 

i n t e r p o l a t i o n  f u n c t i o n s  shown in s e c t i o n  4 . 2 . 1 ,  i . e . ,  



where m and j refer to time and space r e s p e c t i v e l y ,  k=1 i 2 

re la tes  to the x - d i r e c t i o n  andk 


When e q u a t i o n  ( 5 . 4 . 1 )  is w r i t t e n  f o r  every  node I 

and also for a l l  va lue s  of t i m e  t n ' and uk, \ and pk are 

replaced by t h e i r  a p p r o x i n a t i o n s  as given  by expression 

( 6 .2 .1  ) , the f o l l o w i n g  sys t em o£ alqebra ic  e q u a t i o n s  is 

t h e n  obtained 

where 



C ri+ J i k l  
-

{ Q )  1-
Cd 

F 
ik I 

L fi ) e r n ( ~ ) v .  d r d ~  

and 

-aL2, E;, and can be o b t a i n e d  from E:, K:, and Õ: 

r e s p e c t i v e l y ,  r e p l a c i n g  c b y c S  i n e x p r e s s i o n  (6.2.6). It 

should be realised that a i n  expression ( 6 . 2 . 6 )  is an 

exponent, n o t  an  index. 

Only c o n s t a n t  t i m e  s t e p s ,  tm, wil1 be c o n s i d e r e d  

i n  the two-d imens iona l  tra n s i e n t  e lastodynamic numer ical 

a n a l y s i s .  In t h i s  case c a u s a l i t y  and  t i m e  translation 

-nm -nm
propert ies  can be assigned to H i l j k  and G i l j k  and t h e  d i s c u s s i o n  

conducted  in s e c t i o n  4 , 2 . 2  concer ning t h e  sc a la r  wave 

equat ion  c a n  be extended to e l a s t o d y n a m i c s  [see f i g u r e  4 . 2 . 1  

and express ion  ( 4 . 2 . 1 1 ) ] .  

In t h e  numer ica l  a n a l y s i s  undertaken in this 

chapter  +"( r )  is l i n e a r ,  o m ( . r )  is c o n s t a n t ,  n L ( Q )  and v l ( Q )  

are c o n s t a n t ,  and l inea r  discretization is used to approxirnate 

t h e  r boundary .  The time Fnterpolation f u n c t i o n s  $
m 
(T) 

and o r n { ~ )g i v e n  by expressions ( 4 . 2 . 1 2 )  and ( 4 . 2 . 1 8 )  

r e s p e c t i v e l y  can then be s u b s t i t u t e d  into e q u a t i o n s  ( G . 2 . 4 )  

and (6.2.5) and tne r e s u l t i n q  e x p r e s s i o n s  can then be 

i n t e g r a t e d  a n a l y t i c a l l y  w i t h  r e spec t  to t i m e .  



The i n t e g r a t i o n s  over the r boundary are carr ied 

out n u r n e r i c a l l y ,  u s i n g  Gauss q u a d r a t u r e  fornulae  for a11 

time steps, b u t  t h e  f i r s t .  I?hen n=m=l and when it is 

necessary to i n t e g r a t e  over t h e  e lement  in which the source 

p o i n t  is ( j = l ) ,  t h e  i n t e g r a n d  of h a s  a s i n g u l a r i t y  

of t h e  type lnr when r+O. In t h i s  case it is advisable to 

c a r r y  o u t  a n a l y t i c a l  i n t e g r  a t ions  v i a  the procedure o u t l i n e d  

in appendix F. When j = l  t h e  i n t e g r a n d  o£ behaves 

l i k e  l/r when r+O. T h i s  s i n g u l a r i t y  is o£ the same type as 

the one w h i c h  occurs when s t u d y i n g  e l a s t o s t a t i c s ,  As 

c o n s t a n t  e l e r ~ e n t swere used the p r i n c i p a l  v a l u c  o£ i n t c g r a l s  

t h a t  appear when comput ing  H& ( j = l )  are equal  t o  zero. 

However t h i s  is not the case when h i q h e r  order  e lements  are 

used to approxirnate d i s p l a c e m e n t s .  I n  t h i s  situation, 

p r i n c i p a l  values  t h a t  are not zero can be c a l c u l a t e d  

a n a l y t i c a l l y .  

It is r.ow c o n v e n i e n t  to initial each node j ,  w i t h  

nurnbers 2 j - 1  and 2 j  r e f e r r i n g ,  r e s p e c t i v e l y  to d i r e c t i o n s  1 

and 2 of that node, as shown in f i g u r e  6 . 2 . 1  . 



Figure 6.2.1  Global numer a t i o n .  

C o n s e q u e n t l y ,  the followinq r e l a t i o n s h i p s  can  be writter! 

~ n m  - nm 

i l j k  - G(21+i-2) (2j+k-2) 


Therefore, when c o n s t a n t  e l e m e n t s  are used , 

T a k i n q  full accoun t  of expressions ( 6 . 2 . 7 )  and ( 6 . 2 . 8 )  , 
e q u a t i o n  ( 6 . 2 . 3 )  c a n  be w r i t t e n  as 



Equat ion  ( 6 . 2 . 9 )  can  a l ço  be c a s t  i n t o  

H u = G e + B- - - (6 .2 .10 )  

where -H and I: are s q u a r e  matr ices  of order ( 2 J x 2 J )  and-
-u, p and are vectors .  

When boundary c o n d i t i o n s  at a t i m e  tn are cons idered  

and e q u a t i o n  ( 6 .2 .10 )  is c o n v e n i e n t l y  reordered e q u a t i o n  

where , in s i m i l a r i t y  to equation ( 4 . 3 . 3 )  , the  vector y is-
formed by unknowns u and p at boundary nodes. 

j j 

A f ter e q u a t i o n  ( 6 . 2 . 1 1  ) has  been solved displacernents 

at i n t e r n a l  p o i n t s  can be computed u s i n g  the boundary equa t ion  

for  such p o i n t s .  

I n  order to use expression (2.4.4) to ca l cu l a t e  

i n t e r n a l  stresses it is f i rs t  necessary to c a l c u l a t e  t h e  

d e r i v a t i v e s  of the d i s p l a c e m e n t  components w i t h  regard to 

the r e c t a n g u l a r  coordina tes  x In this thesis t h i s  is 
j *  

accomplished n u m e r i c a l l y  u s i n g  t r i a n g u l a r  c e l l s .  L i n e a r  

interpolation f u n c t i o n s  a re  used to approximate components 

o£ displacements uk {k=1,2) i n s i d e  each c e l l ,  i.e., 

where p 
CY 

is g i v e n  by expressian ( 4 . 2 . 3 2 )  anã U
j 

( j = l , 6 )  

a r e  the components o£ the displacernents a t  t h e  c e l l  nodes 

as shown i n  f i g u r e  ( 6 . 2 . 2 ) .  



F i g u r e  6 .  S. 2 Tr i a n q u l a r  c e l l  used to c a l c u l a t e  stresses. 

When expressions ( 2 . 4 . 4 )  and ( 6 . 2 . 1 2 )  are used the 

following e q u a t i o n  is obtained 

where 




and 


6 . 3  	 Examples - Two-Dimensional  Elastodynamics 

In t h i s  s e c t i o n  k h e  numer ica l  procedure p r e v i o u s l y  

d i scus sed  in s e c t i o n  6 . 2  is i l l u s t r a t e d  by a series of 

examples comparinq boundary elements with other n u m e r i c a l  

methods. 

In a l l  of the problems e x a m i n e d ,  t h e  boundary 

i n t e g r a t i o n s  shown i n  e q u a t i o n s  ( 6 . 2 . 4 )  and ( 5 . 2 . 5 )  were 

performed u s i n g  a rnaximurn of t w e n t y  Gauss p o i n t s .  

Further on in t h i s  s e c t i o n  reference will k made 

to t h e  parameter  B g i v e n  by eqi ia t ion ( 4 . 3 . 4 )  . It is 

important to r e a l i z e  t h a t  in elastodynamics cd is used to 

compute s u c h  a parameter ,  i.@., 

6 . 3 . 1  H a l f - P l a n e  Under D i s c o n t i n u o u s  P re sc r ibed Stress 

Distribution - Cruse i61-63) used the Laplace transform to 

solve tra n s i e n t  e lastodynamic problems . In t h i s  approach 

the boundary element method is used t o  f i n d  s o l u t i o n s  in 

the t ransformed domain. The problem is so lved  f o r  v a r i o u s  

d i s t i n c t  v a l u e s  of t h e  Laplace parameter and t h e n  a n u m e r i c a l  

a lgor i thm of invers ion  due to Papoulis 164 1 is employed t o  

f i n d  t i m e  domain solutions. 

l n  h i s  i n v e s t i g a t i o n ,  C r u s e  studied the problern of 

a half-plane ( s e e  f i g u r e  6 . 3 . 1 )  initially at rest, w i t h  

u n i f o r m  compressive tr a c t i o n s  pi applied as a s t e p  f u n c t i o n  
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in t i m e ,  as g i v e n  by 
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F i g u r e  6 . 3 . 1  	 Half-plane under  discontinuous boundar y stress 

d i s t r i b u t i o n .  

The f i r s t  example w a s  t a k e n  t o  compare w i t h  Cruse's 

r e s u l t s ,  and the followinq numerica l  v a l u e s  were adopted 

for the c o n s t a n t s  o£ the problem 

I 



A = G = 1 o 6  p s i  

cd = = i p s3 . 2 7 ~ 1 0 '  i p s .  1 . 8 6 ~ 1 0 ~  
C s 

b = 3000  i nches ,  p O = 1 0 ' p s i  . 

Cruse  compared h i s  r e s u l t s  with the ones presented 

by Craggs (1061, who solved the problem of an u n i f o r m  

compressive stress appl ied over ha l f  the surface of the h a l f -

p l ane ,  as a s tep f u n c t i o n  in t i m e .  Craggs results are also 

p r e sented here , but complete correspondence w i t h  none o£ 

the boundary element ana ly se s  is t o  be expec ted ,  &cause 

Craggs '  load is d i f  ferent from the  one shown i n  figure 6.3.1 

and Rayleigh waves are inc luded  i n  h i s  solution. 

H e r e  and in Cruse's work, the surface of the h a l f -

plane was discret ized into twenty e q u a l  boundary e l e m e n t s ,  

each o£ them having a l e n g t h  of 6000 inches  ( s e e  f i g u r e  6 . 3 . 2 )  . 

When e v a l u a t i n g  stresses it must k recognized 

t h a t  the bigger t h e  cell the less r e p r e s e n t a t i v e  t h e  

stresses w i l l  be. Converse ly ,  very srnall c e l l s  must also 

k avoided because when the d i f f e r e n c e s  between c e l l  node 

disp lacements  are t o o  srnall c o n t r i b u t i o n  to stresses due to 

n u m e r i c a l  errors can  become excessively large.  It is also 

important  to notice that boundary e lement  r e s u l t s  f o r  

interna1 p o i n t s  c lose  to the r boundary are not  good, and 

theref ore cell nodes close to r should be avoided. 

Consequent ly ,  in view of the three restrict ions j u s t  mentioned, 

the best c e l l  that can be used to c a l c u l a t e  stresses at p o i n t  

D(0.-b) is the one i l l u s t r a t e d  by f i g u r e  6 .3 .2 .  



Figure 6.3.2 	 Boundary d i s c r e t i z a t i o n  and i n t e r n a 1  c e l l  f o r  

the half-plane under d i s c o n t i n u o u s  boundary 

stress d i s t r i b u t i o n .  

Not o n l y  the Soundary d i s c r e t i z a t i o n  but a l ç o  t h e  

parameter B must be chosen proper ly .  If B is too l a rge ,  

errors  due to c o n t r a d i c t i n g  t h e  c a u s a l i t y  p rope r ty  and 

e r ro r s  as a r e s u l t  of bad time i n t e r p n l a t i o n  will 

contr i b u t e  to reduce the degree of accuracy o£ t h e  r e s u l t s .  

Four v a l u e s  of B w e r e  t r i ed ;  . 13 ,  . 2 5 ,  . 50  and I. ; the 

s o l u t i o n s  f o r  the two larger v a l u e s  of B b e i n q  unacceptable. 

The nurner i ca l  r e su l t s ,  f o r  B b e i n g  e q u a l  to . 1 3  and . 2 5  were 

similar, c o n s e q u e n t l y  i3 = . 2 5  was c h o s e n  to be the best of 

the four v a l u e s  cons idered -

ln f i g u r e  6 . 3 . 3 ,  ver t i ca l  d i s p l a c e m e n t s  at boundary 

p o i n t s  A(-4b,D), B(-2b,O) and C I 0 , O )  are p l o t t e d .  It should 

be recoqnized t h a t  P, S and R in f i g u r e  6 .3 .3  s t a n d  £or the 



period a£ t i m e  t h a t  a dilatational, an equivoluminal and a 

R a y l e i q h  wave r e s p e c t i v e l y  take to t r a v e 1  f rom the edge of 

a d i s t u r b a n c e  to a p o i n t .  

The agreement w i t h  Cruse's r e s u l t s  is good f o r  

p o i n t s  B and C, b u t  no comparison could be considered f o r  

p o i n t  A because C r u s e  t e rmina ted  h i s  analysis at t = .5s .  

The time-stepping r e s u l t s  a l s o  agree w e l l  w i t h  

C r a g q s '  s o l u t i o n  f o r  the p o i n t  C u n t i l  t = R ,  where R is 

t h e  t i m e  t h e  Rayleigh wave t a k e s  to propagate  E r o m  the edge 

of t h e  d i s tu rbance  t o  t he  point C. 

In f i g u r e  6.3.4 the v e r t i c a l  displacenient at 

the i n t e r n a l  p o i n t  D ( 0 , - b )  is p l o t t e d .  The applicable 

range of Craqgs '  solution was t a k e n  by Cruse to be t < P2 ' 
where P2 is the  t i m e  it takes t he  p r i m a r y  wave to propagate 

from the  edge of t h e  d i s t u r b a n c e  to the p o i n t  D. 

F i g u r e  6 .3 .5  d i s p l a y s  t h e  s tress  o s 2  at t he  

i n t e r n a l  p o i n t  D. The accuracy is lower than  f o r  d i sp lacements  

bec ause stresses are obtained from numer ic ally cornputed 

d e r i v a t i v e s  o£ displacements  . For t h i s  c e l l  in p a r t i c u l a r ,  

there are  t w o  other  f a c t o r s  t h a t  c o n t r i b u t e s  to reduce the 

stress accuracy; f i r s t l y  t h e  c e l l  is t o o  large and s e c o n d l y  

it h a s  two nodes which  are close to the boundary.  

The jump c o n d i t i o n  g i v e n  b y  e q u a t i o n  ( 2 . 2 . 2 5 )  

mgst be s a t i s f i e d  at the wave f r o n t .  Therefore  a t  t = O  

it is posçible to wri te  t h a t  at t h e  boundary p o i n t  C 
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i n t e r n a 1  p o i n t  D(0,-b). 



Figure 6 . 3 . 3  demonstrates t h a t  the r e s u l t s  o£ t h e  n u m e r i c a l  

ana lyse s  obey equation ( 6 . 3 . 4 )  . 

Craggs '  s o l u t i o n  a l s o  p r e d i c t s  that when t h e  

wave front reaches the p o i n t  D t h e  s t ress  o Z 2  jumps f r o m  

zero to -po. This can e a s i l y  be ver i£ i e d  by t h e  i i i s p ~ t i o n  

of f i g u r e  6 . 3 . 5 .  

As the v a l u e  of the jump in t h e  stress is 

knawn, it is not d i f f i c u l t  to c o n c l u d e  that when the wave 

front reaches the p o i n t  D, U 2  jumps from zero  to the v a l u e  

given by expression ( 6 . 3 . 4 ) .  I n s p e c t i o n  of f i g u r e  6 . 3 . 4  

demonstrates t h a t  this jump is w e l l  represented by the 

numer i c a l  s o l u t i o n s  under consideration. 

F i n a l l y  f o r  this example it can be conc luded  

t ha t  

( a )  	 The displacements obta ined  u s i n g  the time-stepping 

t e c h n i q u e  were c lose t o  the displacements  obtained 

by Cruse .  

(b) 	Despi te  t h e  lar-ge c e l l  used, t he  t ime-s tepping technique  

gave r e s u l t s  f o r  stresses which were acceptable.  

( c )  	 B o t h  t h e  Laplace transform and the time-stepping 

t echn ique  gave results that f ollowed very c l o s e l y  t h e  

predic t ed  phys ica1 behaviour of t h e  problern analysed . 

6 . 3 . 2  H a l f - P l a n e  Under Irnposed Boundary V e l o c i t y  - In this 

a p p l i c a t i o n ,  t h e  h a l f - p l a n e  is i n i t i a l l y  at r e s t  and part 05 

its s u r f a c e  is farced to move w i t h  c o n s t a n t  v e l o z i t y  in t h e  

ve r t i ca l  d i r e c t i o n .  The prescr ibed  boundary c o n d i t i o n s  

for t h i s  problem are shown in f i g u r e  6 . 3 . 6  and are g i v e n  by 
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Figure  6 . 3 . 6  Boundary conditions for the half-plane under  
imposed boundary veloc  ity . 





as the d i s p l a c e m e n t s  in the previous  a n a l y s i s .  At p o i n t s  

C and D both n u m e r i c a l  t e c h n i q u e s  qave the r e s u l t s  p red ic t ed  

by expres s ion  ( 6 . 3 . 7 1  . The t i ne - s t epp inq  scherne r e s u l t s  

osc illated slightly a r o u n d  the a n a l y t i c a l  solution. This 

fact had a l r e a d y  been no t i ced  in chap te r  f o u r  when investigating 

problems governed by the sca la r  wave equa t ion. Apparently 

osc i l l a t ion c an occur whenever boundary d i splacements  are 

pre sc r ibed  and 6 is too small. 

Another  a n a l y s i s  in which  B was reqarded as be ing  

e q u a l  to - 7 5  and the size of t h e  elements taken to k equa l  

to 2 0 0 0  i n c h e s  was a l ç o  u n d e r t a k e n .  

Displacements and stresses at D w e r e  similar to 

the ones obtained w i t h  t h e  fir st d i s c r e t i z a t i o n ,  however 

tr a c t i o n s  va r i ed .  A compar i s o n  o£ f i q u r e s  6 .3 .9  and 6 . 3 . 1 2  

demonstrates that t h e  boundary discretization depicted in 

figure 6 . 3 . 2  is too coarse,  r e s u l t i n g  in bad n ~ m e r i c a lresults ' 

f o r  t r a c t i ons  at the boundary p o i n t s  A anC E .  

In f i g u r e s  6.3 .13  and 6 . 3 . 1 4  t r a c t i o n s  at p o i n t s  

B and C are  p l o t t e d  r e s p e c t i v e l y .  These f i g u r e s  show that 

by u s i n g  f3 = . 7 5  t h e  o s c i l l a t i o n  o£ t h e  n u m e r i c a l  results 

w a s  p r a c t i c a l l y  eliminated. 

F i n a i l y  as far as t h i s  problem is concerned it 

can be conc luded t h a t  

(a} 	The displacements ob ta ined  u s i n g  t h e  t irne-stepping 

t e c h n i q u e  agreed with the r e s u l t s  ob t a ined  by C r u s e .  

(b) 	E x c e s s i v e l y  small v a l u e s  of E s h o u l d  be avoided i r ]  

problems in which d i sp lacements  are prescr ibed over 

p o r t i o n s  o£ t h e  boundary.  
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( C )  	 Both, the t i ine-s teppinq and t h e  Lapiace t r a n s f o r m  

techniques, yie lded  r e s u l t s  w h i c h  ve ry  c l o s e l y  

fol lowed the predicted phys i ca l  behaviour of t he  problern 

analysed. 

6 . 3 . 3  HalE-Plane Under Continuous P r e s c r i h d  S t t e s s  

D i s t r i b u t i o n  - In t h i s  a p p l i c a t i o n  the time-stepping t e chn ique  

discuçsed in t h i s  work is compared w i t h  the f i n i t e - d i f f e r e n c e  

mode: implemented by Tseng et a l .  ( 1 I ) ,  In t h a t  r epo r t  a 

transmitting boundary w a s  developed and used together  w i t h  

t h e  g e n e r a l i z e s  lumped parameter model presented in referentes 

(107-1 0 9 ) .  

The problem to b analysed is depicted in f i g u r e  

6.3 .15 ,  The ha l f -p l ane  is  i n i t i a l l y  a t  reçt and its surface 

i s  d i s t u r b e d  by a v e r t i c a l  t r a c t i o n  which i s  con t ingous  

i n  both t i m e  and space. 

The 	following n u m e r i c a l  v a l u e s  were adopted fo r  t h e  

cons tants  	05 t h e  problem 

E = 200 k s i ,  v = - 1 5  

cd = 3 . 2 8 8 ~ 1 0 '  i p s ,  c = 2.112x104 i p s  . 
S 


The c r i t e r i o n  g iven  by Tseng { l l )  to choose the 

f i n i t e  d i f f e r e n c e  mesh requires t h a t  

u 

where tr is rise or decay time of the a p p l i e d  pressure and 

Ax g i v e s  the mesh ref inement .  When tr = 20 m s e c ,  Ax 
+ 
< 27 .4  f t 

is obtained.  Tseng  chose Ax = 10 ft and the d i s c r e t i z a t i o n  

as depic ted  i n  f i g u r e  6 . 3 . 1 6 ,  where the p o s i t i o n  selected f o r  

t h e  c y l i n d r i c a l  wave t r a n s m i t t i n g  boundar ies  can also be seen. 
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Figure  6.3.15 Load for t he  ha l f -p lane  unde r  c o n t i n u o u s  
prescr ibed s t r e s s  d i s t r ibution. 
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F i g u r e  6.3.16 

180' 
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F i n i t e - d i f f e r e n c e  mesh f o r  the h a l f - p l a n e  
under c o n t i n u o u s  prescr ibed str ess  
dis t r i b u t i o n .  



The boundary e l e m e n t  d i s c r e t i z a t i o n  and c e l l s  

used in t he  a n a l y s i s  are shown in f i g u r e  6 . 3 . 1 7 .  

According to referente { I  1} t h e  t i m e  increment A t  , 
used in this f i n i t e - d i f f e r e n c e  a n a l y s i s ,  must obey e q u a t i o n  

( 6 . 3 . 9 )  and At = 1. msec was adopted. 

For the boundary elenent a n a l y s i s ,  B waç t a k e n  to 

be equal to .5, which g i v e s  

At = 3.65 msec 

The t i m e  history of the vertical displacements plotted 

i n  f i g u r e s  6 . 3 . 1 8 ,  6 .3 .19 and 6 . 3 . 2 0  shows an acceptable  

agreement f o r  the t i m e  i n t e r v a l  considered.  

In his research Tseng carried out another a n a l y s i s  

u s i n q  a pa i r  of t r a n s m i t t i n g  boundaries which enclosed a 

smaller rectangular region whose side lengths were equal 

to 90 ft and 1 5 0  ft. The two f i n i t e - d i f f e r e n c e  analyses 

showed t h a t  t h e  l a r g e r  t h e  r e g i o n  enclosed by the transmitting 

boundar ies ,  t h e  c l o s e r  finite difference and boundary elements 

r e su l t s  were. Therefore it Ls q u i t e  j u s t i f i e d  to suppose 

that t h e  major p r o p o r t i o n  of t h e  difference between the 

displacements ob ta ined  with the t w o  nurner ica1 methods under 

consideration i s  caused by errors generated at t h e  t r ansmitting 

bound ar i e S .  

T s e n q  also presented t h e  t i m e  h i s t o r y  o£ the 

v e r t i c a l  d isplacements  for t h e  point G ( 1 5 0  ' ,10 ' ) obtained 

w i t h  the 9 O r x 1 5 0 '  r e c t a n g u l a r  reqion.  A s  G is located 

e x a c t l y  on the t r a n s m i t t i n g  boundary it can  be expected t h a t  





f i n i t e - d i f f e r e n c e  displacernents at this p o i n t  will have a 

l o w  accuracy.  The point G is also a c r i t i c a l  one in t h e  

boundary e l e m e n t  a n a l y s i s  because it is t o o  close to the 

boundary of the h a l f - p l a n e .  Results obtained with the two 

methods are shown in f i g u r e  6 . 3 . 2 1 .  As it was expected t h e  

agreernent is n o t  as close as recorded previously. 

Figu re s  6 . 3 . 2 2  to 6.3.24 descr ibe the  t i m e  h i s t o r y  

of stresses at p o i n t s  A ( 4 5 ' , 7 5 ' ) ,  B ( 7 5 ' , 7 5 ' )  and C ( 5 ' , 7 5 ' ) .  

When the load is applied as a step f u n c t i o n  in 

time, f i r , i t e - d i f f e r e n c e s  can not be used because of the 

r e s t r i c t i o n s  imposed by e q u a t i o n  ( 6 . 3 . 8 )  . A possible way of 

overcoming this d i f f i c u l t y  is by r ep lac inq  t h e  jump by a 

slope. In ordex t o  check the  errors introduced by such  a 

procedure t h e  problem displayed i n  f igure 6 .3 .15  was 

r e - i n v e s t i g a t e d  u s i n g  boundary e l e m e n t s ,  but t h i s  t i m e  the 

load was abruptly applied at t = O (see f i g u r e  6.3.25). The 
. . - ,  

c, , , 	 - '  

time h i s t o r y  of stress p l o t t e d  i n  f i g u r e  6 . 2 . 4  shows t h a t  

a complete agreernent occurs  with the prev ious  a n a l y s i s  during 

l a t e  t imes ,  b u t  d u r i n g  ear ly  t i m e s  the r e s u l t s  are 

d i f f e r e n t .  

F i n a l l y ,  f o r  t h i s  example it c a n  be concluded 

that 


(a )  	 The s o l u t i o n s  u s i n g  both the f i n i t e  d i f f e r e n c e  and 

boundary element methods are in good agreement. 

(b) 	The t i m e  i n c r e m e n t  r equ i red  by boundary elements  was 

biqqer  than that necessary f o r  f i n i t e  d i f f e r ences .  

( c )  	When t h e  time var i a t ion of the load i nc ludes  jumps , 

boundary elements are more s u i t a b l e  than f i n i t e  d i f £ e r e n c e s .  



Figure  6 . 3 . 1 8  	 Half-plane  under  c o n t i n u o u s  pr escr ibed 
stress d i s t r i b u t i o n .  Displacenent u 2  at t h e  
i n t e r n a l  point D(01,70'). 
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F i g u r e  6 . 3 . 1 9  	 Half -p lane  under c o n t i n u o u s  prescr  ibed s t ress  
d i s t r i b u t i o n .  D içp lacemen t  u at t h e  i n t e r n a l  
p o i n t  E l o '  , 6 0 1 ) .  
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F i g u r e  6 . 3 . 2 1  Half-plane under  continuous prescr ibed stress 
d i s t r i b u t i o n .  Displacernent u at the i n t e r n a l  
p o i n t  G ( 1 5 O '  , 1 0 ' ) .  2 



Figure  6 . 3 . 2  2 H a l f  -plane under continuous pre scr i k d  

c22 A 

-.-= -1.0 

-(O
2 
GZ* - o - 5k 

stresç d i s t r i b ~ t i o n .  S t ress  o at t h e  
i n t e r n a l  p o i n t  A ( 4 5 '  , 7 5 ' ) .  2 2  

-L,a A p = . s  

- Ir-- TSE NG O *  ----e---* m *  m * . . . . .  

miei BEM STATIC SOLUIION 

* 
O * I I I I 1 1 I 

- - - -
STATIC SOLUTION 

O 40 60 80 100 I20 140 160 
t (msec 1 

Figure 6 . 3 . 2 3  Hal f -p lane  under  continuous prescr ibed s tress 
d i s t r i b u t i o n .  Stress o Z 2  at the i n t e r n a l  
p o i n t  B ( 7 5 '  , 7 S 1 ) .  
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Figure  6.3.24 	 H a l f  -plane under cont inuous  prescr ibed stress 
d i s t r i b u t i o n .  S t ress  D~~ at t h e  i n t e r n a 1  
p o i n t  C(5',7St). 

TIME 

Figure 6 . 3 . 2 5  	 Load appl ied as a Heaviside f u n c t i o n  in t i m e  
f o r  the hal f -p lane  under  continuous prescribed 
s tress  d i s t r  ibution. 



6 . 3 . 4  Serni-Inf i n i t e  Beam - T h i s  a p p l i c a t i o n  cons is t s  of a 

s e m i - i n f i n i t e  beam simply suppor ted  along i ts edge (see 

f i g u r e  6 . 3 . 2 6 )  and subjected to a suddenly applied b e n d i n g  

mornent. 

MO = M H ( t - O )  ( 6 . 3 . 1 0 )  

The Poisson r a t i o  f o r  rhis plane  s t ress  problem 

was t a k e n  to be 1 / 3 .  

The boundary e l e m e n t  mesh cons is ted  of t h i r t y  s i x  

e q u a l  e lements  as d e p i c t e d  in figure 6 . 3 . 2 7  and B was 

taken as equal  to .5. 

A finite e l e m e n t  a n a l y s i s  of t h i s  problem was 

c a r r i e d  o u t  by Fu i 1 iO) who used the mesh depic ted  in 

f i g u r e  6.3.28 i n  h i s  numer ical s o l u t i o n .  T r ansver se 

d i s p l a c e m e n t s  along the axes o£ the  k a m  obtained w i t h  both  

numerical t e c h n i q u e s  are shown in f i g u r e  6.3.29.  W i t h i n  

t h i s  same f i g u r e  r e su l t s  ob ta ined  from the beam theory by 

Boley  i 1 1 1  1 are also p l o t t e d .  The  displacements depic ted  

in f i g u r e  6 . 3 . 2 9  refer to 

where r is t h e  radius of g y r a t i o n  05 the b e m  cross sec t ion  

and c. i s  the one-dimensional  wave propagat ion speed { I 1 1  ) .  

As it w a s  expected nane of t h e  two-dimensional 

numer ica 1  ana lyses  agreed completely w i t h  the a n a l y t i c a 1  

s o l u t i o n  ob ta ined  f r o m  the k a m  t h e o r y .  However the boundary 

element r e s u l t s  çhow t h a t  the two-dimensional  s o l u t i o n  

a p p e a r s  t o  be closer  to t h e  beam t h e o r y  t h a n  i n i t i a l l y  

i nd i ca t ed  by t he  f i n i t e  elernent rnethod. 



F i g u r e  6.3.26 Geometr y and load ing of t h e  s e m i - i n f  inite 
ham. 

Figure 6 . 3 . 2 7  Boundary e l e m e n t  mesh for  t he  ç e r n i - i n f i n i t e  
be arr, . 



F i g u r e  6 . 3 . 2 8  F i n i t e  e l e m e n t  mesh f o r  t h e  semi- inf  i n i t e  
beam. 

F i g u r e  6 . 3 . 2 9  Transverse  displacement  alonq t h e  s e m i - i n f i n i t e  
beam at t h e  time t = 5r /cd  



6 . 3 . 5  Hole in an  Infi n i t e  Plate - In a d d i t i o n  to tke bean 

ana lysed  in t h e  l a s t  sect ion,  Fu 1101  a l so  s t u d i e d  another  

problem w h i c h  consisted of a h o l e  in an  i n f  i n i t e  p l a t e  and 

compxed r e s u l t s  w i t h  t hose  cbta ined  by C h o w  and Koenig ( 1  1 2 1  

using the method o£ charac ter i s t ics .  

The load in t h i s  example c o n s i s t s  o£ a c o n s t a n t  

i n t e r n a l  p ressure  suddenly appl ied on t h e  hole s u r f  ace as 

d e p i c t e d  i n  f i g u r e  6 .3 .30 .  The appl ied  pressure is  

independent  of 8 ,  t he re fo re  the stresses and the  disp lacements  

ca lcu la ted  w i t h  r espec t  to the system of polar  coordinates  

shown i n  f i g u r e  6.3 .30  are a l s o  hdependent  of 8 .  

The Poisson r a t i o  f o r  t h i s  p lane  s tress a n a l y s i s  

was t a k e n  as beinq e q u a l  to 1 / 3 .  

The bounãary e lement  d i s c r e t i z a t i o n  and cells used 

in this analysis are depic ted  i n  f iqure  6 .3 .31 .  The parameter 

6 was t a k e n  to be e q u a l  to 0 . 5 .  

The f i n i t e  e lement  discretization used in t h i s  

a n a l y s i s  is n o t  presented i n  reference { 1 1 0 ) ,  however an 

idea of the number o£ f inite elements and t i m e  i n c r emen t s  

required i n  t h i s  sort of problem is provided by reference 

C65). 

F i g u r e  6 . 3 . 3 2  depic ts  t h e  t i m e  h i s t o r y  of r a d i a l  

and c i r c u m f e r e n t i a l  stresses at p o i n t s  A,  B and  C d i sp l ayed  

in f i g u r e  6 , 3 . 3 1 .  The aqreement is acceptable f o r  t h e  

i n t e r n a l  p o i n t s ,  but t h e  boundary elernent r e s u l t s  do n o t  

represent  w e l l  t h e  hoop stress at the boundary p o i n t  A .  

Another  a n a l y s i s  w a s  then car r ied  out with B = . 2 ,  and 

the stress at the p o i n t  A ,  d i s p l a y e d  in f i y u r e  6 . 3 . 3 2 ,  



improved cons ide rab ly .  F u r t h e r  r e d u c t i o n  o£ the t i m e  

incrernen'cs would c e r t a i n l y  inprove t h e  boundary  e l e m e n t  

r e s u l t s ,  however t h i s  wãs n o t  done d u e  to l i m i t a t i o n s  on 

cornputer t i m e  available. 

F i n a l l y  it shou ld  be recaqnized that t h e  stress  

o e e  at t h e  boundary p o i n t  A was c a l c u l a t e d  as d e s c r i k d  in 

appendix I. 
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Figure 6.3.30 Loadinq of the hole in an i n f  i n i t e  p l a t e .  

F i g u r e  6.3.31 Boundary d i s c r e t i z a t l o n  and ce l l s  £or t h e  
ho le  in an i n f i n i t e  p l a t e .  
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Figure  6.3.32 Radial  and c i r c u n f e r e n t i a l  s t resses  at points 
A ( x ~ , o ) ,B(2.02Ro,0) and C(3.45Ro,0) fo r  t h e  
ho le  i n  an i n f i n i t e  p l a t e ,  



CHAPTER 7 

GENERAL DISCUSSION AND CONCLUSIONS 

At p r e s e n t  t he re  e x i s t  a number of papers (see  

Chap te r  1) which  £orrr.ulate t h e  bounda ry  e i e m e n t  method for 

so lv ing  tra n s i e n t  wave propaga t ion  problems u s i n q  three-

dirnensional time domain boundary i n t e g r a l  e q u a t i o n s .  

However the only g e n e r a l  approaches t h a t  use two-dimensional 

fundamental solutions are those discussed in Chap te r  1 , 

w h i c h  employ e i t h e r  Laplace o r  F o u r i e r  transforms to 

eliminate t h e  t i m e  dependence of t h e  problem. So far t h e  

a n l y  g e n e r a l  n u m e r i c a l  procedure t h a t  has  been developed to 

a n a l y s e  t r a n s i e n t  wave propagat ion problems in t w o  d i m e n s i o n s ,  

usinq time dependent  fundamen ta l  s o l u t i o n s ,  cons ide r s  the 

two-dimensional case  as be ing  a p a r t i c u l a r  three-dirnensional  

problem. Us ing  t h i s  approach it is poss ib le  to b e n e f i t  

from the e x i ç t i n g  knowledge r ega rd ing  t h e  three-dimensional 

case.  

I n  this research,  two-dimensional t i m e  dependent 

Green'  s f u n c t i o n s  were used to deduce i n t e g r a1 e q u a t i o n s, 

amenable to n u n e r i c a l  solutions of two-dimensional transient 

wave propagation problems. A boiindaxy e l e m e n t  scheme 

w a s  appl i ed  to so lve  n u m e r i c a l  problems yoverned by t h e  

s c a l a r  wave and Navier's e q u a t i o n s .  Therefore t h e  proposed 

method c a n  be used to analyse plane-stress, plane strain and 

a n t i p l a n e  motions. 

In c h a p t e r  2, a r e v i s i o n  of the l i n e a r  eiastodynamics 

was p r ~ v i d e d ,w i t h  the purpose of b r i e f l y  investiqating t h e  

basic theory and also simultaneously i n t r o d u c i n g  notation 



and t e rmino logy  t h a t  wou ld  k employed later. 

A l t h o u g h  t h i s  research was primar ily concerned 

with two-dimens iona l  applications, the three-dimens i o n a l  

problen was a l s o  discusçed.  I n  this way s o m  i m p o r t a n t  

d i sc repanc ie s  o£ the behav iour  of t w o - and three-dimensional 

waves c o u l d  be shown. T h e  three-di rnensional  fo rmu la t i on  was 

a l s o  r e q u i r e d  to o b t a i n  two-dimensional boundary i n t e g r a1 

equat ions , bec ause i n  t h e  pxocedure applied the me thod of 

descent  was employed . 

One oE t h i s  theç is '  objectives was to d e r i v e  the 

boundary i n t e g r a l  e q u a t i o n  ( 3 . 7 . 1 8  ) which constituted the 

basis for developing a time-stepping scheme to solve 

numer ic a l l y  t r a n s i e n t  two-dimensional problems governed by 

t h e  scalar wave e q u a t i o n .  

U s u a l  t ime march ing  schemes t r e a t  each t i m e  s t ep  

as a new problem, and consequently at the end  of each t i m e  

i n t e r v a l ,  values  oE d i s p l a c e m e n t s  and v e l o c i t i e s  are 

ca lcu la ted  f o r  a number o£ i n t e r n a 1  points, in order to use  

them as pseudo-initial conditions f o r  the next s t e p ,  i . e .  

the i n t e g r a l  equation ( 3 .7 .18 )  i s  appl ied  from O to dt; 

At t o  2 h t  e t c .  In t h i s  thesis  however, t h e  t i m e  integration 

procesç is always considered to s t a r t  at the t i m e  ' 0 '  

and so  values of displacements and v e l o c i t i e s  d o  not need to 

be calculated at in te rmedia te  steps. With t h i s  p rocedu re ,  

t h e  domain d i s c r e t i z a t i o n  is r e s t r i c t ed  t o  r eg ions  where source  

density and i n i t i a l  c o n d i t i o n s  do  not d i sappea r .  The 

domain i n t e g r a t i o n s  at a time s t e p  ' j ' are conseq i i en t ly  

avoided a t  the expecse  of h a v i n g  to c a l c u l a t e  t ime  

i n t e g r a t i o n s  f o r  a11 t i m e  steps p rev ious  to 'j'. Two square 



matrices of order ( J x J )  must be stored f o r  each t i m e  s t ep ;  

J b e i n g  t h e  number of boundar ies n o d ~ s .  Therefore  when 

resul t s  f o r  v e r y  l a t e  t i m e s  are required a computer with a 

l a s y e  s torage  area is needed, The f i rst  t i m e  marchinq 

scheme d i s c u s ç e d  pzeviously is u s e f u l  f o r  bounded domains 

in w h i c h  l a t e  time s o l u t i o n s  a r e  sough t ,  in a11 other cases 

the 	second scheme is more su i tab le .  

L i n e a r  d i s c r c t i z3 t i on  was used to approximate the 

-	 geometry o£ t h e  r boundary. However it s h o u l d  be recoqnized 

t h a t  it c o u l d  be an advantage to use higher order d i s c r e t i z a t i o n s  

when a n a l y s i n g  problems with  more complic ated geometr ies 

t h a n  t 5 o s e  considered i n  s e c t i o n  4 . 3 .  

Of the  three  d i s t i n c t  corcbinations of interpolation 

f u n c t i o n s  used to approxirrate u and p on the houndary ,  

combination 2 w a s  considered t h e  most sui table  one (see 

t ab le  4 . 3 .  i reproduced below) . 

Cqmbination Interpolation funciion 

7 Linear Linear Linear 
2 Linear Linear Constant 
3 Con$tarit Linsar Constant 

-

Table 4 . 3 . 7  Combination of i n t e r p o l a t ion Eunct ions. 

In a cons iderab le  number o£ wave propaga t ion  

ptoblems,  p can  be d i s c o n t i n u o u s  and the use  of c o n t i n u o u s  

em (t), i n t r o d u c e s  excessive oscillations in the numerical  

resul=s .  For t h i s  reason a discontinuous tirr.e interpolation 



f u n c t i o n ,  e rn( . r )  = c o n s t a n t ,  was u sed  t o  approximate p. 

However h i g h e r  order d i s c o n t i n u o u ç  d m ( t )  çhould  also be 

considered in f u t u r e  r e s e a r c h  p r i m a r i l y  to irnprove the 

e f f i c i e n c y  o f  the n u m e r i c a l  a n a l y s i s .  

In the n u m e r i c a l  applications car r ied  o u t  in 

s e c t i o n  4 . 3 ,  g is a l so  discontinuous i n  space.  Despite t h i s  

fact , continuous l inear  elements y i e lded  good numerical  

r e s u l t s  f o r  a11 of the three problerns s t u d i e d .  

The time integr a t i o n s  i n d i c a t e d  in expre s s i ons  

( 4 . 2 . 5 )  and (4,2.6) were performed analytically. The 

i n t e g r a n d s  o£ t h e  boundary i n t e g r a l s  ob ta ined  w i t h  this 

procedure ( s e e  expression 4 . 2 . 1 7 )  have s i n g u l a r i t i e s  which 

are of the sanie order as those which  appear wher, cons ide r inq  

steady state p o t e n t i a l  problems . Cansequently Gauss quadr ature 

cou ld  be a p p l i e d  to i n t e g r a t e  numerically over a11 of the 

e lements except those with s i n g u l a r i t i e s . S i n g u l a r  boundary 

i n t e q r a l s  were carried o u t  a n a l y t i c a l l y .  

L i n e a r  t r i a n g u l a r  ce 11s were used t o  c a l c u l a t e  

contr ibutions due to i n i t i a l  cond i t ions . In the s e m i - a n a l y t i c  a1 

scheme discussed in s e c t i o n  ( 4 . 2 . 2 )  a sys tem of polar 

coordina tes  ( r ,8 )  was cmployed and i n t e g r a t i o n s  w i t h  respect 

to r were perf ormed a n a l y t i c ally. The expressions obtained 

were t h e n  in tegra ted  numer i ca l l y  w i t h  respect to 9 u s i n q  

one-dirrens i o n a l  Gauss quadr ature. This method o£ computing 

i n i t i a l  c o n d i t i o n s  c o n t r i b u t ions, that appear  in expression 

( 3 . 7 . 1 8 )  , was t e s t e d  in the examples d i s c u s s e d  i n  s e c t i o n ç  

4 . 3 . 2  and 4 . 3 . 3  and proved to be very e f f l c i e n t .  



A maximurn of t e n  Gauss points was u s e d  to p e r f o r m  

bo th ,  c e l l  and boundary  i n t e g r a t i o n s .  The nurnber of 

Gauss p o i n t s  was q r a d u a l l y  reduced as tke t ime-stepping 

scheme advanced in t i m e ,  b u t  no g e n e r a l  r u l e  was d e r i v e d ;  

c o n s e q u e n t l y  f u r t h e r  i n v e s t i g a t i o n s  on t h i s  s u b j e c t  are 

r equ i r ed .  

Three examples c o n c e r n i n g  two-dimens i o n a l  problems 

governed by the scalar wave equa t io f i  w e r e  considered i n  

s e c t i o n  4 . 3 .  The f i r s t  example (see s e c t i o n  4 . 3 . 1 )  t e s t e d  

the performance of the proposed time-stepping scher.e on a 

problem in which p nas d i s c o n t i n u o u s  i n  bo th  time and space.  

The second example was s t u d i e d  in s e c t i o n  4 .3 .2  and was 

concerned w i t h  c h e c k i n g  the numerica l  perforrnance o£ t h e  

time-steppinq t e c h n i q u e  descr i b e d  in t h i s  t h e s i s  when the 

p r e s c r i b e d  initial c o n d i t i o n s  were n o t  n u l l .  A f u r t h e r  

illustration of the n u m e r i c a l  t e c h n i q u e  under cons ide ra t ion  

c a n  be found  in s e c t i o n  4 . 3 . 3 .  I n  the  exampie ana ly sed  there, 

the time was div ided  i n t o  intervals t h a t  w e r e  s h o r t e r  

t h a n  i n  t h e  two previous  examples. T h i s  was because of the 

rather complicated t i m e  and space behaviour of p .  I n  a11 o£ 

these three a p p l i c a t i o n s  the accuracy of t h e  numer ica l  

s o l u t i o n s  was considered to be very good. 

From t h e  problems analysed in s e c t i o n  4 . 3  it can 

also be concluded that very  small v a l u e s  of t h e  parameter  

B ,  can in c e r t a i n  s i t u a t i o n s  i n t r o d u c e  an excess ive  leve1 o£ 

noise into t h e  n u m e r i c a l  r e s u l t s .  Another  i m p o r t a n t  

c o n c l u ç i o n  that c a n  be i n f e r r e d  from the a p p l i c a t i o n s  is 

that great care should be t a k e n  when choosing t h e  time 

i n t e r v a l s  an8 boundary d i s c r e t i z a t i o n ,  in order  t o  avoid 



c o n t r a d i c t i n q  t h e  c a u s a l i t y  p r o p e r t y  too far , t h a t  is, 

in each t i m e  s t e p  waves s h o u l d  not be allowed to t r a v e 1  

k t w e e n  noees £ar from each o t h e r .  

A d i s c u s s l o n  concern ing  two- and three - d i m e n s i o n a l  

t ime-donain i n t e g r a l  e q u a t i o n s  f o r  trans i e n t  e las todynarnics  

was t h e  o b j e c t  of c h a p t e r  5 .  The p r i m a r y  intention w a s  to 

descr ibe the mathemat ica l  manipulations required to obtain 

equation ( 5 . 4 . 1 )  ( s e e  s e c t i o n  5 . 4 1 ,  which can be used on the 

two-dimens ional  numer ical a n a l y s i s .  I n i t i a l  cond i t i ons  

were n o t  considered i n  equation (5.4. I )  , however they can  

be i n c l u d e d  by following a procedure similar to that pre sen t ed  

in s e c t i o n  3 . 7 .  

L i n e a r  discretization was uscd to approxiinate the 

geoinetry of the  I' boundary and c ù m b i n a t i o n  3 d i sp layed  in 

t a b l e  4 . 3 . 1  was adopted t o  i n t e r p o l a t e  boundary displacementç  

and tractions. 

As in t h e  case of the scalar  wave equat ion ,  both t i m e  

i n t e q r a t i o n s  and space in tegr a t i o n s  of s i n g u l a r  e x p r e s s i o n s  were 

perf ormed a n a l y t i c ally . Non-s i n g u l a r  boundary i n t e g r a l s  

were computed nurne r i ca l ly  empioying a m a x i m u m  of t w e n t y  

Gauss p o i n t s .  

The scheme implemented t o  compute i n t e r n a 1  stresscs 

was similar to the simplest procedure used in f i n i t e  e l e m e n t s .  

T r i a n g u l a r  c e l l s  were used and stresseç at t h e i r  cen t ro ids  

w e r e  c a l c u l a t e d  from d isp lacements  which were l i n e a r l y  

i n t e r p o l a t e d  i n s i d e  each  c e l l  as a f u n c t i o n  of t h e  

displacements at the c e l l  nodes. 



F i v e  n u m e r i c a l  a p p l i c a t i o n s  were cons idered  in 

sec t ion  6.3, where d i s c u ç s i o n ç  conce -n ing  t h e  cho ice  of 

boundary elernent meshes  and time intervals were p r e s e n t e d .  

R e s u f ts obta ined  w i t h  t h e  time-domain boundary e lement  

formulaticn were compared w i t h  t hose  obtained u s i n g  

bounda ry  e lements  in conjunction w i t h  Lap lace  transforrn, 

f i n i t e - d i f f e r e n c e s  and f i n i t e  e l e m e n t s .  

The agrcement  o£ the r e s u l t s  was acceptable for 

displacements  and  tr a c t i o n s .  The accuracy of t h e  stress 

numerica l  r e s u l t s  was however dependent on a good se lec t ion  

oF c e l l s .  Large c e l l s  c a n  lead to i n c o r r e c t  results mainly 

on regions of stress concent ra t ion. C o n v e r s e  ly e x c e s s i v e l y  

srnall  c e l l s  should a l s o  be avoided because t h e  displacements 

of these c e l l  nodes c a n  often be t o o  close to each o the r  

which may r e s u l t  in a large c o n t r i b u t i o n  to stresses d u e  

to n u m e r i c a l  errors. A more appropr i a t e  scheme in which  

c o n s t a n t  stress c e l l s  can  still be employed is that in 

which stresses,  at any interna1 point, are obta ined  as t h e  

average va lue  of stresses computed at v a r i o u s  c e l l s  having 

such a p o i n t  as a conunon node. Hiqher  order c e l l s  s h o u l d  

also be t e s t e d  in future, however the most s u i t a b l e  a l t e r n a t i v e  

method to improve stress accuracy  is to c a l c u l a t e  t h e m  u s i n g  

a proper i n t e g r a l  equat ion. 

In a brief r e v i e w  it s h o u l d  be recognized t h a t  

t h e  boundary i n t e g r a l  t e chn ique  p r e sen t ed  in t h i s  r e p o r t  

showed to be v e r y  promising. Despite the poor i n t e r p o l a t i c n  

f u n c t ions used in the numer i c a l  analyses encour a g i n q  r e s u l t s  

were obtained. 



In order to improve t h e  numer ical tec hnique 

d i scus sed  here k1igher order t i m e  and space i n t e r p o l a t i o n  

functions t oge the r  w i t h  a more  accura te  scheme to compute 

stresses are recommended tu ,be implemented  in f u tu se  

r e sea rch .  

With referente to e x t e n d i n q  the p r e s e n t  reçearch 

to a more d i v e r s e  range of prablerns, initial c o n d i t i o n s  

and body fo r ce s  can  e a s i l y  be i n t r oduced  i n t o  t h e  two-

d i m e n s i o n a l  elastodynamic f o r m u l a t i o n .  Sub-regions must 

also be implemented t o  i n t r o d u c e  t h e  possibility of analysing 

non-homogeneous bodies.  A v a s t l y  m o r e  e f f i c i e n t  s o l u t i o n  

of half-plane problems c a n  be obtained usinq f u n d a m e n t a l  

s o l u t i o n s  s p e c i f i c a l l y  derived f o r  that case. Lmplementation 

of s u c h  s o l u t i o n s  must also be t h e  object of future research 

e f f o r t s .  

The rec omrnendations f o r  f u t u r e  research ment ioned  

above only cons ide r  a f e w  topics which c a n  have immediate 

app l i ca t ions  to a d i v e r s e  range of p r a c t i c a l  e n g i n e e r i n q  

problems. Howeves , there are many o t h e r  possible extensions 

which can be der ived from t h i s  r eport and  the case which 

requires to be analysed first is a rnatter to h decided 

accord ing  to t he  spec i f l c  problem which needs to be solved. 
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F i g u r e  B. 2 Disc T E  around the boundary p o i n t  S .  

When &+O; s+s and r 
( R .  1 4 )  

If expreçsion ( B . 7 )  is t a k e n  i n t o  account  it is poss ib le  to 

write, 

E 

+ u ( S , t )  lim . 
€ + O  



E v a l u a t i o n  of the l i m i t s  shown in expression ( B . 1 5 )  then 

reduce s to e v a l u a t inq 

(B.1 6 )  

Since  p d p  = rdr for a g i v e n  6 c c ~ ;it is possible to write 

(O when [>O 

= Lim 71 -6 -- ( B .  17)  
6+0 1 5 6 1 - E  

.'I when 5=0 , 

and so, 

SU = 2 ~ u i S r t )  (B.1 8 )  

as before. 

Althouqh e i t h e r  of the t w o  a l t e rna t i ve s  descr ibed 

can bz u s e d ,  t h e  f i r s t  o n e  is prefer red  in this work because 

it c a n  e a s i l y  be employed for boundaries o£ t he  Kellog type 

as w i l l  be illustrated in the following paragraphs.  

The  next situation to be considered is t h a t  where 

t h e  domain R is c y l i n d r i c a l  as shown in f i g u r e  B . 3  and the 

boundary p o i n t  S is located on a edge, that is, the Liapunov 

smoothness c o n d i t i o n  is n o t  v a l i d  l o c a l l y .  The body m u s t  t h e n  

be conridered as b e i n q  auqmented by a volune about S whose 

boundary is formed by t h e  i r i tersect ion of a spher ica l .  

s u r f a c e  r w i t h  two p l a n e s  as shown in f i g u r e  3.3. The 
E 

l i m i t  i nd i ca t ed  i n  e q u a t i o n  (B.9 )  can  c o n v e n i e n t l y  be 



with 


L" = lim IE+O --

where r; and i" are depicted in f i g u r e  ( B .  4 ) . 
E 

It has  already been shown t h a t  

l 2'0 

L '  = O 

[=O . 
L" c a n  be obta ined  as o u t l i n e d .  by the following opera t ions  

(see f i g u r e  D.4) 

where B is t h e  a n g l e  i nd i ca t ed  in f iqure  R .  3. C o n s e q u e n t l y  

(B.2 4 )  

where a is the i n t e r n a 1  a n g l e  dep ic t ed  in f i g u r e  B . 3 .  

F i n a l l y  it should  be recoqnized  that e x p r e s s i o n  

( 3 . 2 5 )  c a n  be extended f o r  t h e  s i t u a t i o n  i n  w h i c h  the t h ree  



Figure B . 3  Domain w i t h  a Kellog t y p e  boundary augmented 

by a sphere .  

F igure  8 . 4  S u r f  aces I; and r:. 



d i m e n s i o n a l  domain is not c y l i n d r i c a l ,  therefcre  c ( S )  can 

be derive11 f o r  points located on corners following a 

procedure s imilar  to the one d e s c r i b e d  in t h i s  appendix. 



APPENDIX C 

TWO-DIMENSIONAS FUNDAMENTAL SOLUTION TO THE 


SCALAR WAVZ EQUATION 


It was shown in s e c t i o n  3.6 t h a t  t h e  f u n d a m e n t a l  

s o l u t i o n  to t h e  two-dirnensional scalar  wave e q u a t i o n  can  be 

ob ta ined  from 

or, in view of expre s s ion  ( 3 . 4 . 6 )  

According to f igure C .  1 the followinq r e l a t i o n s h i p  can be 

w r i t t e n  

( C . 3 )  

where 

and 

It should be recoqnized that 5 in t h i s  case is a point 

belonging to the ( x ,  , x 2 ) plane .  



F i g u r e  C. 1 	 X l l u s t r a t i o n  of the r e l a t i o n s h i p  g i v e n  by 

expression ( C . 3 ) .  

In v i e w  o£ expression ( C , 3 ) ,  expresç ion  ( C . 2 )  can  

be w r i t t e n  as ( 9 )  

To perform t h e  i n t e g r a t i o n  indica ted  in expression (C .  6 )  

the  following p r o p e r t y  o£ the Dirac d e l t a  f u n c t i o n  C981 

is r e q u i r e d  



w h i ç h  can be used whenever  f t ( x ) = dx does n o t  v a n i s h  

at the  r o o t s  x i ( i = 1  , 2 . .  .n )  of f (x). The t w o  r o o t s  of the  

arqument  o£ t h e  Dirac delta in expression ( C . 6 )  are 
' / 2  

t k 2(t-r) '-RI. Thus 

1 -- 1 - c ( c - r )  L 2(t-r)'-Rq - 1 
/2 . 

T h e r efore 

Ln view of expression (C.  9) the i n t e g r a t i o n  i n d i c a t e d  in 

expression ( C . 6 )  can now be c a r r i e d  out, resulting in 

(6 ,9 )  

It should be noted that when R is replaced by r, expression 

( C .  f O )  becomes expression ( 3 . 6 . 9 )  . 



A P P E N D I X  D 

LINE INTEGRATIONS OVER THE CURVE DEFINED BY 

THE r BOUNDARY 

I n  t h i s  appendix the following r e l a t i o n s h i p  which 

w a s  used p r e v i o u s l y  i n  s e c t i o n  3 . 7  

will be ob ta ined ,  From a comparison of e x p r e s s i o n s  (D,1 ) 

and ( 3 . 7 . 1 5 )  it is apparen t  that t h e  notation h a s  k e n  

changed,  i . e .  r r ( 0 )  has been r e p l a c e d  b y r ( 0 ) .  It is 

bel ieved that t h i s  s h o u l d  n o t  cause c o n f u s i o n ,  once it iç 

unders tood  that r ( 8 )  is  the d i s t ance  b e t w e e n  the o r i g i n  of 

the p o l a r  coord ina te  s y s t e m  shown in f i g u r e  D.1 and a p o i n t  

Q on the r boundary. 

F i g u r e  D.1 U n i t  vec to r s ,  p o l a r  and line coordinates .  



The f ollowing expressions can now be w r i t t e n  

r-
where v = -- is t h e  u n i t  vector  p a r a l l e l  to the line that

11: I 

a rf (r) dr = 

joins t h e  poins s and Q in f i g u r e  D . 7 .  In v i e w  oF e x p r e s s i o n s  

f (r) ( v . n )- - dT 

(D.2 )  and (D.3 )  , expression (D.1) is valid as lonq as I t  can 

be proved t h a t  

With referente to figure D. 1 

hence 

and 

L e t  t which is g iven  as 

k a tangent vector to r at Q i  as shown i n  f i g u r e  D. 1 .  

Then the u n i t  outward normal vector at Q can be w r i t t e n  as 

n = ( b i  - a i ) / -- (D.9) 



-t is g i v e n  by 

then  the e x p r e s s i o n  for -n reads 

T a k i n q  express i .ons  (D.51  and ( D .  7 1 ) i n t o  consideration it 

i s  fa i r l y  simple to demonstrate t h a t  

A c o r n p a r i s ~ nof exp re s s ions  ( D . 7 )  and 1D.121 d e m o n s t r a t e s  

t h a t  formula I D . 4 )  is v a l i d ,  c o n s e q u e n t l y  expression (D.1) 

is proved. 



APPENDIX E 

ANALYTICAL TIME INTEGRATION 


This appendix p r e s e n t s  expresçions fo r  (D?)
1 I' 


nm nrn 
(Di I F t  (Ei ) I r  (E;") and ~2~ t h a t  appear in equat i o n s  

( 4 . 2 . 1 7 )  and ( 4 . 2 . 2 0 )  . X ~ i t i a l l yit is c o n v e n i e n t  to 

d e f i n e  the f ollowing cons tan t s  

nm nm 

I and (E?) w h i c h  appear in 

e q u a t i o n  ( 4 . 2 . 1 7 )  c a n  be c a l c u l a t e d  from (I), (11), (111), 
(Di )I, (Di )F, ( ~ 2 ~ )  

(IV) and (V) which  follow, 



(11) tm+, ' tn - r/c, tK < tn - r /c  and tm+, < t n  I r f O )  

nm
(Di ) I Use expression q i v e n  i n  (I)+ 

(E:~)~ - Use expression q i v e n  in (I) 

-
(111) tm > tn - r/c and  tm-, < tn - r/c (r can be e q u a l  to zero)  

-
( I V )  tm+l> tn - r/c, and tm+l = t n  

( ~ 2 " ) ~-t Use expression g i v e n  in ( I )  

nm
(Ei ) I + Use expres s ion  q i v e n  in (I) 



FYcan be compüted from (,VI),(VI11 ,and ( Y I I I )  k l o w .  

Each expres s ion  presented in t h i s  appendix must be 

m u l t i p l i e d  by a Heaviside f u n c t i o n  whose a r g u m e ~ tis e q u a l  

to the first argurnent of a square root  to become negat ive  

in the expression under  cons ide r at i o n .  



APIENDIX F 

INTRINSIC COORDINATTS 

L e t  x . ( S )  r e p r e s e n t  the coord ina te s  of the source 
1 


p o i n t  S with reqard t o  the s y s t e m o f  Car tes ian  coo rd ina t e s  

shown in f i g u r e  F .  1 .  The e l e m e n t  ek shown in this f i g u r e  

j o i n t s  t w o  nodes whose coordinates  are given by 

E k  

O ( j k ]  

[x, { - I )  , x2i-1gJ-i 
1 

5 

F i a u r e  F. 7 I n t r  i n s i c  and r e c t a n g u l a r  coordinates.  



Cons ide r inq  t h a t  r = r ( S , F k )  = 1s - Q ( s ~ )  and 

der.oting t h e  components of nk by ( n k )i, the following 

r e l a t i o n s h i p s  can be r s x i t t e n  

drk = J I dtk =
lk 
~ d $ (Summation c o n v e n t i o n  not  to be use8 

f ~ rthe  ind i ce  k). 

In expression ( F . 2 ) ,  J is t h e  Jacobian of t h e  coordfnate 

transformation, lk is t h e  lenqth of ek and 

f n  v i e w  of e q u a t i o n s  ( F . 2 )  and ( F . 3 )  t h e  integrals in 

equa t ions  ( 4 . 2 . 2 2 )  and ( 4 . 2 . 2 3 )  c a n  k e a s i l y  c a l c u l a t e d  

u s i n q  i n t r i n s i c  c o o r d i n a t e s  Sk. When l i nea r  interpolation 

f u n c t i o n s  in time and space are adopted,  the fo l l owing  

expressions can  be w r i t t e n  



As previously s t a t e d  in s e c t i o n  4 . 2 ,  w i t h  the 

nn nn nn
except ion  of (Gi,i-l1 I, (GifiII and (Gifi+l)I, a11 others 

c o e f f i c i e n t s  in expression ( F . 4 )  can be computed u s i n q  

one-dimensional Gauss quadrature . When n=m and i = j  , 
nn

(E:") I iç r e q u i r e d  to compute (Gii)I. In t h i s  s i t u a t i o n ,  
n m  

1i11 1(Ei ) r  in e x p r e s s i o n  ( F . 4 )  can be w r i t t e n  as ( s e e  expression 

Analytical i n t e q r a t i o n  can now be c a r r i e d  o u t  to c a l c u l a t e  

the c o n t r i b u t i o n s  to ( ~ 2 2 )  in express ion  ( F . 4 ) , ofI 

the t e r m  that have a logari thrn s i n g u l a r i t y .  The m a n i p u l a t i o n s  

requi red  are de scr ibed below. 



where 

when  c A t < l  
P 

other wise 

lc when c .b t< l  
q 


o the rw i se
4 

nn
The procezure to be followed fo r  the coeffi c i e n t s  
(Gi,i-l1 I 

and ) I i~ s imi lar  to t h e  one j u s t  p resenzed  fo r  
nn 

(eifi) consequently it wilL not be described h e r e  . 

It is i n ipo r t an t  t o  recognize  t h a t  although the 

c o e f f i c i e n t s  G?? f o r  l i n e a r  and c o n s t a n t  O* a re  d i f f e r e n t  
1 3  

frorn each other, t h e i r  singular t e r m  iç the same. Therefore 

r e s u l t s  simil~rto those  de f ined  by expression (F.6) c a n  be 

obta ined  in t h e  case of c o n s t a n t  time i n t e r p o l z t i o n .  



APPENDIX G 


TRANSVERSE MOTION OF A RECTANGULAR MZMBRANE 

UNDER PRESCRIBED I N I T I A L  VELOCITY  

This appendix is concerned w i t h  obtaining 

expresçions to represent  the t r a n s v e r s e  motion o£ the 

rec tangular  membr ane analysed i n  section 4.3 .3 .  The 

displacements are nu11 cn the r boundary  and an initial 

ve loc i ty  v. is presc r ibed  over the r e c t a n g u l a r  a r e a  A 
O 

shown in f i g u r e  G. 1. The ana ly t i ca l  s o l u t i o n  for  t h i s  

specif ic problem w a s  der ived using the gener a1 expr e s ç i o n s  

given in referente { I 05 1 .  

. Figure G-7 	Geometsy,  bundasy  and i n i t i a l  cbnditions f o r  

the  me mbr ane . 

The t ransverse  displacement u (xl X2 ,t) a t  any  

point i n s i d e  t h e  domair d e f i n e d  by t h e  rnembrane and the 

t r a c t i o n s  p ( a , x s ,t; at any point on t h e  L i n e  x, =a can be 



c a l c u l a t e d  from 

a rn ~m r ~ n x  
2vo 'I

u ( x l , x Z , t )  = T  1 I,,,) s i n [-$I sin [-$I G~~ ( G - 1 )
m = l  n= l  mn 

12vo 
mI - nTx 

P ( a , x 2 , t )  ' cosrnmsin-
m=1 n=lnumn b Gmn 

where 


2 
C56 3,b [ cOs  

m-rra 
7 - Co.5 

m n a ,  

s in(2srvm,t)  

and the n a t u r a l  f r e q u e n c i e s  vmn a re  q i v e n  by 

In t h e  case of t he  membrane ana lysed  in c h a p t e r  4 ,  

(a=b, a'=bt=-)
a 
5 

the series of expre s s ions  ( G . 1 )  2nd (G.2)  

were computed with eiqhty and one hundred terms re s p e c t i v e l y . 



APPENDIX E 

FUNDAMENTAL TRACTTON 

The t w o - d i m e n s  i o n a l  f u n d a m e n t a l  tr a c t i o n  g i v e n  by 

expression ( 5 . 2 , 4 )  can a lso  be computed f rom 

where is the f u n d a m e n t a l  s t r a i n ,  i . e .  

1= -(u* +u* 1 
' i j k  2 ik,j i j , k  (H.21  

and 0 is t h e  cons tan t  g iven  by expression ( 5 . 2 . 9 ) .  In order 

to work out an expression f o r  E*i j k :  uti< must  be computed,j 
first, from uTk outlined by e q u a t i o n  ( 5 . 2 . 6 ) .  uZk, can 

c o n v e n i e n t l y  be w r i t t e n  as 

where 


L,, N 1  , and N~ in express ions  (H.4) to ( H . 8 )  are g i v e n  

by expression 1 5 . 4 . 3 ) .  

u* . can t h e n  e a s i l y  be obtained once expressions
lk 1 I 

f o r  t he  d e r  i v a t i v e s  o £  'I,, T2, T q ,  Tq and T5 with respect 

to x have k e n  c a l c u l a t e d .  The p rocedure  to be fol lowed 
j '  



will now be descr ibed; the followinq relationships w i l l  be 

u çed 

I H . 9 )  

(H.70) 

-ar = 	 (H.11)o'n r,ini 


3 . 0 . .  = n (H.1 2 ) 

J 11 i 

( H .  13)  

T o  b e q i n  w i t h  the  opera t ions  requi red  to o b t a i n  
a ~ .  a ~ ,  aT,-- 1  

L and -"will be described in (a), (b)and ( c )ôx. 	r ax ax 
3 j j 


( a )  	 When expression (H.1 3 )  Is ernploye3 the following 

relaticnship can be w r i t t e n  

( H .  15)  

T a k i n g  account of sxpression (H.1 4 )  it is p o s s i b l e  to write 

-aT1  r ~ ~ H c t ' r+ L  
a~ I= r I 1 2 r 5 -1 a t L -6ii[ - 2 i l c s i )  	 . (H.16) 

( b )  	 When expreçsions (H. 1 3 )  and (H. 1 4 )  are zonç ide red ,  

the following formula  c a n  be der ived  



( H .  1 7 )  

The t h i r d  t e r m  on t h e  r i q h t  hand side of expreçsior:  (H.1 7 )  

is null, and c o n s e q u e n t l y  

(H.i a )  

( C )  	C o n s i d e r i n q  expression (H.1 3 )  , the f o l l o w i n q  f o r m u l a  

can  be w r i t t e n  

Using expression (H.9) t h e  f o r m u l a  below can k der ived  

(H.2 0 )  

The 	f o l l o w i n q  expression c a n  also be deduced 

d-(L 	 N ) = r"; . ( 3 . 2 1 )ar 	 2 2 

S u b s t i t u t i n g  expressions ( H .  2 0 )  and ( A .  2 1 )  i n t o  (H.1 9 )  

and using expression (H.7 4 )  then g i v e s  



Tq and T5 can now be obtained r e p l a c i n q  c s  by cd in 

e x p r e s s i o n s  (A.1 8 )  and (H.2 2 )  . Then ,  u l k I c a n  be 

de r ived  f r o m  expressions ( H . 3 ) ,  (H.l6j, ( H . 1 8 )  and (H.22). 

u*i j ,k 
can e a s i l y  be oSta ined  by i n t e r c h a n g i n g  j and k by 

k and j respect ively ,  in the expression that yields u*i k I j m  
Having ob ta ined  u t k  . and u*ij ,k' expression (H.2) can  then 

1 3  

be employed to work out & Z j k ,  r e s u l t i n g  in 

+ p i j k ~ 2 ~ Z17kr 3 ~ Z ] ~ E s t ' - r ]++ G . .  

( H .  2 3 )  

E . .  - + 6 ,  ,r
11k - I k r t j  i 3  ,k 

G . .  = - - 2 
11k r 2  r ,ir , I.r,k 



The f u n d a m e n t a l  t r a c t i o n  P ; ~ ,  a5 described by 

equa t i on  ( 5 . 2 8 )  can now be ob t a ined  by s u b s t i t u t i n g  

expression (H.23) into ( H . l ) .  



APPENDIX 1 

STRESS AT BOUNDARY POINTS 

No integral express ion  is der ived  in t h i s  t h e s i s  

to compute stresses. At i n t e r n a 1  points, ce l l s  are used to 

o b t a i n  space d e r i v a t i v e s  o£ disp lacements  whlch are 

subçequen t ly  used to compute çtresses. However the  same 

p r o c e d u r c  c a n n o t  be employed for boundary  p o i n t s .  In 

t h i s  i n s t ance  the procedure outlined in this section 

must be a p p l i e d .  

From Hookets Law [ equa t i on  ( 2 . 2 . 1 5 ) ]  t h e  cornponents 

of t h e  s t ress  t e n ç o r ,  which  refer t h e  d i r e c t i o n s  s and n 

shown in figure 1.1, are g i v e n  by 

F i g u r e  1.1 S y s t e m  o£ coord ina te s  and boundary p o i n t s  u sed  

to compute t h e  s t ress  g s 5 .  



If t h e  expression ( 1 . 1 )  is employed,  ass can be computed  

f r o m  

= 4G -A+G E + - X 
O 5 . ç  A + 2 G  ss  X+2G "nn 

E q u i l i b r i u m  c o n d i t i o n s  give 

and t h e r e f o r e  when p ,  and p 2  are known only remains  

to be d e t e r m i n e d ,  in order t o  compute c s s  g i v e n  by expression 

(I.2 )  . The displacernent component in a direct i o n  par a l l e l  

to s is g iven  by 

U~ = -U 1 2  2 1  ' 

c o n s e q u e n t l y  c a n  be c a l c u l a t e d  from 

-- -U n +u1 , s  2 2 , s n t  ( 1 .5 )  

The fo l l owing  express ion  c a n  now be u s e d  to o b t a i n  ui 
1 s 

at a node 5 o£ the r boundary ( s e e  f i g u r e  I . 1) 

Expression ( I . 6 }  h a s  already been used in { 36 ,37 ,65 ,113 )  

and t h e  accuracy f o r  boundary stresses ob ta ined  in those 

references was considerred s a t i s f a c t o r y .  
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